enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    The definition of e x as the exponential function allows defining b x for every positive real numbers b, in terms of exponential and logarithm function. Specifically, the fact that the natural logarithm ln(x) is the inverse of the exponential function e x means that one has = ⁡ (⁡) = ⁡ for every b > 0.

  3. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable ⁠ ⁠ is denoted ⁠ ⁡ ⁠ or ⁠ ⁠, with the two notations used interchangeab

  4. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm function, if considered as a real-valued function of a positive real variable, is the inverse function of the exponential function, leading to the identities: ⁡ = + ⁡ = Like all logarithms, the natural logarithm maps multiplication of positive numbers into addition: [ 5 ] ln ⁡ ( x ⋅ y ) = ln ⁡ x + ln ⁡ y ...

  5. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    Exponentiation occurs in many areas of mathematics and its inverse function is often referred to as the logarithm. For example, the logarithm of a matrix is the (multi-valued) inverse function of the matrix exponential. [97] Another example is the p-adic logarithm, the inverse function of the p-adic exponential.

  6. Elementary function - Wikipedia

    en.wikipedia.org/wiki/Elementary_function

    In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x 1/n).

  7. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    Sometimes, the inverse of a function cannot be expressed by a closed-form formula. For example, if f is the function = ⁡, then f is a bijection, and therefore possesses an inverse function f −1. The formula for this inverse has an expression as an infinite sum:

  8. Logarithmic growth - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_growth

    Logarithmic growth is the inverse of exponential growth and is very slow. [2] A familiar example of logarithmic growth is a number, N, in positional notation, which grows as log b (N), where b is the base of the number system used, e.g. 10 for decimal arithmetic. [3] In more advanced mathematics, the partial sums of the harmonic series

  9. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The polynomials, exponential function e x, and the trigonometric functions sine and cosine, are examples of entire functions. Examples of functions that are not entire include the square root, the logarithm, the trigonometric function tangent, and its inverse, arctan. For these functions the Taylor series do not converge if x is far from b.