Search results
Results from the WOW.Com Content Network
Electronegativity, symbolized as χ, is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. [1] An atom's electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus. The higher the ...
Electronegativity is not a uniquely defined property and may depend on the definition. The suggested values are all taken from WebElements as a consistent set. Many of the highly radioactive elements have values that must be predictions or extrapolations, but are unfortunately not marked as such.
Polar molecules must contain one or more polar bonds due to a difference in electronegativity between the bonded atoms. Molecules containing polar bonds have no molecular polarity if the bond dipoles cancel each other out by symmetry. Polar molecules interact through dipole-dipole intermolecular forces and hydrogen bonds.
Pauling estimated that an electronegativity difference of 1.7 (on the Pauling scale) corresponds to 50% ionic character, so that a difference greater than 1.7 corresponds to a bond which is predominantly ionic. [10] Ionic character in covalent bonds can be directly measured for atoms having quadrupolar nuclei (2 H, 14 N, 81,79 Br, 35,37 Cl or ...
The tendency of an atom in a molecule to attract the shared pair of electrons towards itself is known as electronegativity. It is a dimensionless quantity because it is only a tendency. [16] The most commonly used scale to measure electronegativity was designed by Linus Pauling. The scale has been named the Pauling scale in his honour.
See also: Electronegativities of the elements (data page) There are no reliable sources for Pm, Eu and Yb other than the range of 1.1–1.2; see Pauling, Linus (1960).
Metallic bonding is mostly non-polar, because even in alloys there is little difference among the electronegativities of the atoms participating in the bonding interaction (and, in pure elemental metals, none at all). Thus, metallic bonding is an extremely delocalized communal form of covalent bonding.
For interstitial solid solutions, the Hume-Rothery Rules are: . Solute atoms should have a smaller radius than 59% of the radius of solvent atoms. [5] [6]The solute and solvent should have similar electronegativity.