Search results
Results from the WOW.Com Content Network
The following models a text document using bag-of-words. Here are two simple text documents: ... Each key is the word, and each value is the number of occurrences of ...
A word n-gram language model is a purely statistical model of language. It has been superseded by recurrent neural network–based models, which have been superseded by large language models. [1] It is based on an assumption that the probability of the next word in a sequence depends only on a fixed size window of previous words.
To exploit a parallel text, some kind of text alignment identifying equivalent text segments (phrases or sentences) is a prerequisite for analysis. Machine translation algorithms for translating between two languages are often trained using parallel fragments comprising a first-language corpus and a second-language corpus, which is an element ...
Note that, unlike representing a document as just a token-count list, the document-term matrix includes all terms in the corpus (i.e. the corpus vocabulary), which is why there are zero-counts for terms in the corpus which do not also occur in a specific document. For this reason, document-term matrices are usually stored in a sparse matrix format.
A matrix containing word counts per document (rows represent unique words and columns represent each document) is constructed from a large piece of text and a mathematical technique called singular value decomposition (SVD) is used to reduce the number of rows while preserving the similarity structure among columns.
For instance, if all occurrences of the letter e turn into the letter X, a ciphertext message containing numerous instances of the letter X would suggest to a cryptanalyst that X represents e. The basic use of frequency analysis is to first count the frequency of ciphertext letters and then associate guessed plaintext letters with them.
Surface forms of the input text are classified as to part-of-speech (e.g. noun, verb, etc.) and sub-category (number, gender, tense, etc.). All of the possible "analyses" for each surface form are typically made output at this stage, along with the lemma of the word. Lexical categorisation.
Fuzzy matching is a technique used in computer-assisted translation as a special case of record linkage. It works with matches that may be less than 100% perfect when finding correspondences between segments of a text and entries in a database of previous translations.