Search results
Results from the WOW.Com Content Network
The steeper the bank, the greater the g-forces. This top-fuel dragster can accelerate from zero to 160 kilometres per hour (99 mph) in 0.86 seconds. This is a horizontal acceleration of 5.3 g. Combining this with the vertical g-force in the stationary case using the Pythagorean theorem yields a g-force of 5.4 g.
At chemical equilibrium, the reaction quotient Q r of the product activity (a Red) by the reagent activity (a Ox) is equal to the equilibrium constant (K) of the half-reaction and in the absence of driving force (ΔG = 0) the potential (E red) also becomes nul. The numerically simplified form of the Nernst equation is expressed as:
The weight of the object in the fluid is reduced, because of the force acting on it, which is called upthrust. In simple terms, the principle states that the buoyant force (F b) on an object is equal to the weight of the fluid displaced by the object, or the density of the fluid multiplied by the submerged volume (V) times the gravity (g) [1] [3]
+5 psi Level of long-duration blast overpressure (from a large-scale explosion) that would cause most buildings to collapse [49] 34 kPa Atmospheric pressure at the summit of Mount Everest [50] +70 kPa +10 psi Pressure for paint exiting an HVLP (low-pressure) paint spray gun [51] 70 kPa Pressure inside an incandescent light bulb [52] 75 kPa
Shock describes matter subject to extreme rates of force with respect to time. Shock is a vector that has units of an acceleration (rate of change of velocity). The unit g (or g) represents multiples of the standard acceleration of gravity and is conventionally used.
In unit systems where force is a primary unit, like in imperial and US customary measurement systems, g c may or may not equal 1 depending on the units used, and value other than 1 may be required to obtain correct results. [2] For example, in the kinetic energy (KE) formula, if g c = 1 is used, then KE is expressed in foot-poundals; but if g c ...
The increase in weight is equal to the amount of liquid displaced by the object, which is the same as the volume of the suspended object times the density of the liquid. [1] The concept of Archimedes' principle is that an object immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. [2]
In his research, Archimedes discovered that an object is buoyed up by a force equal to the weight of the water displaced by the object. In other words, an inflatable boat that displaces 100 pounds (45 kilograms) of water is supported by the same amount of force. An object that floats in a fluid is known as being positively buoyant.