Search results
Results from the WOW.Com Content Network
The degenerate matter that makes up the bulk of a white dwarf has a very low opacity, because any absorption of a photon requires that an electron must transition to a higher empty state, which may not be possible as the energy of the photon may not be a match for the possible quantum states available to that electron, hence radiative heat ...
In white dwarf stars, the positive nuclei are completely ionized – disassociated from the electrons – and closely packed – a million times more dense than the Sun. At this density gravity exerts immense force pulling the nuclei together. This force is balanced by the electron degeneracy pressure keeping the star stable. [4]
From the quantum statistics of a completely degenerate electron gas (all the lowest quantum states are occupied), the pressure and the density of a white dwarf are calculated in terms of the maximum electron momentum standardized as = /, with pressure = and density =, where
Following the Pauli exclusion principle, there can be only one fermion occupying each quantum state. In a degenerate gas, all quantum states are filled up to the Fermi energy. Most stars are supported against their own gravitation by normal thermal gas pressure, while in white dwarf stars the supporting force comes from the degeneracy pressure ...
White dwarfs resist gravitational collapse primarily through electron degeneracy pressure, compared to main sequence stars, which resist collapse through thermal pressure. The Chandrasekhar limit is the mass above which electron degeneracy pressure in the star's core is insufficient to balance the star's own gravitational self-attraction.
The remaining material forms a star in a very dense state. [2] One of the three white dwarfs, Sirius B, a companion to Sirius, was discovered by Walter Sydney Adams after a suggestion by Arthur Eddington to use the relativistic Doppler effect as predicted by special relativity. [2]
Quantum mechanics specifies the construction, evolution, and measurement of a quantum state. The result is a prediction for the system represented by the state. Knowledge of the quantum state, and the rules for the system's evolution in time, exhausts all that can be known about a quantum system.
As the quantum concentration depends on temperature, most systems at high temperatures obey the classical (Maxwell–Boltzmann) limit, unless they also have a very high density, as for a white dwarf. Both Fermi–Dirac and Bose–Einstein become Maxwell–Boltzmann statistics at high temperature or at low concentration.