enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Weighted median - Wikipedia

    en.wikipedia.org/wiki/Weighted_median

    The weighted median is shown in red and is different than the ordinary median. In statistics, a weighted median of a sample is the 50% weighted percentile. [1] [2] [3] It was first proposed by F. Y. Edgeworth in 1888. [4] [5] Like the median, it is useful as an estimator of central tendency, robust against outliers. It allows for non-uniform ...

  3. Weighted arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_arithmetic_mean

    As in the scalar case, the weighted mean of multiple estimates can provide a maximum likelihood estimate. We simply replace the variance σ 2 {\displaystyle \sigma ^{2}} by the covariance matrix C {\displaystyle \mathbf {C} } and the arithmetic inverse by the matrix inverse (both denoted in the same way, via superscripts); the weight matrix ...

  4. Median absolute deviation - Wikipedia

    en.wikipedia.org/wiki/Median_absolute_deviation

    The median absolute deviation is a measure of statistical dispersion. Moreover, the MAD is a robust statistic, being more resilient to outliers in a data set than the standard deviation. In the standard deviation, the distances from the mean are squared, so large deviations are weighted more heavily, and thus outliers can heavily influence it ...

  5. Weight function - Wikipedia

    en.wikipedia.org/wiki/Weight_function

    Weighted means are commonly used in statistics to compensate for the presence of bias.For a quantity measured multiple independent times with variance, the best estimate of the signal is obtained by averaging all the measurements with weight = /, and the resulting variance is smaller than each of the independent measurements = /.

  6. M-estimator - Wikipedia

    en.wikipedia.org/wiki/M-estimator

    Such an estimator is not necessarily an M-estimator of ρ-type, but if ρ has a continuous first derivative with respect to , then a necessary condition for an M-estimator of ψ-type to be an M-estimator of ρ-type is (,) = (,). The previous definitions can easily be extended to finite samples.

  7. Inverse probability weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse_probability_weighting

    An alternative estimator is the augmented inverse probability weighted estimator (AIPWE) combines both the properties of the regression based estimator and the inverse probability weighted estimator. It is therefore a 'doubly robust' method in that it only requires either the propensity or outcome model to be correctly specified but not both.

  8. Estimator - Wikipedia

    en.wikipedia.org/wiki/Estimator

    A consistent estimator is an estimator whose sequence of estimates converge in probability to the quantity being estimated as the index (usually the sample size) grows without bound. In other words, increasing the sample size increases the probability of the estimator being close to the population parameter.

  9. Trimean - Wikipedia

    en.wikipedia.org/wiki/Trimean

    For context, the best single point estimate by L-estimators is the median, with an efficiency of 64% or better (for all n), while using two points (for a large data set of over 100 points from a symmetric population), the most efficient estimate is the 27% midsummary (mean of 27th and 73rd percentiles), which has an efficiency of about 81% ...