enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Evolutionary programming - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_programming

    Evolutionary programming is an evolutionary algorithm, where a share of new population is created by mutation of previous population without crossover. [ 1 ] [ 2 ] Evolutionary programming differs from evolution strategy ES( μ + λ {\displaystyle \mu +\lambda } ) in one detail. [ 1 ]

  3. Population model (evolutionary algorithm) - Wikipedia

    en.wikipedia.org/wiki/Population_model...

    When applying both population models to genetic algorithms, [5] [6] evolutionary strategy [20] [17] [21] and other EAs, [22] [23] the splitting of a total population into subpopulations usually reduces the risk of premature convergence and leads to better results overall more reliably and faster than would be expected with panmictic EAs.

  4. Grammatical evolution - Wikipedia

    en.wikipedia.org/wiki/Grammatical_evolution

    For example, GE researchers have experimented with using particle swarm optimization to carry out the searching instead of genetic algorithms with results comparable to that of normal GE; this is referred to as a "grammatical swarm"; using only the basic PSO model it has been found that PSO is probably equally capable of carrying out the search ...

  5. Genetic programming - Wikipedia

    en.wikipedia.org/wiki/Genetic_programming

    Genetic programming (GP) is an evolutionary algorithm, an artificial intelligence technique mimicking natural evolution, which operates on a population of programs. It applies the genetic operators selection according to a predefined fitness measure , mutation and crossover .

  6. Evolutionary algorithm - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_algorithm

    Download QR code; Print/export ... The following is an example of a generic evolutionary algorithm: [7] [8] [9] ... Similar to genetic algorithms and evolution ...

  7. Evolutionary computation - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_computation

    Three branches emerged in different places to attain this goal: evolution strategies, evolutionary programming, and genetic algorithms. A fourth branch, genetic programming, eventually emerged in the early 1990s. These approaches differ in the method of selection, the permitted mutations, and the representation of genetic data.

  8. Gene expression programming - Wikipedia

    en.wikipedia.org/wiki/Gene_expression_programming

    The genetic operators used in the GEP-RNC system are an extension to the genetic operators of the basic GEP algorithm (see above), and they all can be straightforwardly implemented in these new chromosomes. On the other hand, the basic operators of mutation, inversion, transposition, and recombination are also used in the GEP-RNC algorithm.

  9. Mutation (evolutionary algorithm) - Wikipedia

    en.wikipedia.org/wiki/Mutation_(evolutionary...

    The classic example of a mutation operator of a binary coded genetic algorithm (GA) involves a probability that an arbitrary bit in a genetic sequence will be flipped from its original state. A common method of implementing the mutation operator involves generating a random variable for each bit in a sequence. This random variable tells whether ...