enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. RSA (cryptosystem) - Wikipedia

    en.wikipedia.org/wiki/RSA_(cryptosystem)

    The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers, the "factoring problem". Breaking RSA encryption is known as the RSA problem. Whether it is as difficult as the factoring problem is an open question. [3] There are no published methods to defeat the system if a large enough key is used.

  3. Cryptography - Wikipedia

    en.wikipedia.org/wiki/Cryptography

    Data manipulation in symmetric systems is significantly faster than in asymmetric systems. Asymmetric systems use a "public key" to encrypt a message and a related "private key" to decrypt it. The advantage of asymmetric systems is that the public key can be freely published, allowing parties to establish secure communication without having a ...

  4. Key (cryptography) - Wikipedia

    en.wikipedia.org/wiki/Key_(cryptography)

    In a key transport scheme, encrypted keying material that is chosen by the sender is transported to the receiver. Either symmetric key or asymmetric key techniques can be used in both schemes. [11] The Diffie–Hellman key exchange and Rivest-Shamir-Adleman (RSA) are the most two widely used key exchange algorithms. [12]

  5. Strong RSA assumption - Wikipedia

    en.wikipedia.org/wiki/Strong_RSA_assumption

    In cryptography, the strong RSA assumption states that the RSA problem is intractable even when the solver is allowed to choose the public exponent e (for e ≥ 3). More specifically, given a modulus N of unknown factorization, and a ciphertext C , it is infeasible to find any pair ( M , e ) such that C ≡ M e mod N .

  6. Optimal asymmetric encryption padding - Wikipedia

    en.wikipedia.org/wiki/Optimal_asymmetric...

    In cryptography, Optimal Asymmetric Encryption Padding (OAEP) is a padding scheme often used together with RSA encryption. OAEP was introduced by Bellare and Rogaway , [ 1 ] and subsequently standardized in PKCS#1 v2 and RFC 2437.

  7. Public-key cryptography - Wikipedia

    en.wikipedia.org/wiki/Public-key_cryptography

    Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key . [ 1 ] [ 2 ] Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions .

  8. Cryptographic key types - Wikipedia

    en.wikipedia.org/wiki/Cryptographic_key_types

    Asymmetric keys differ from symmetric keys in that the algorithms use separate keys for encryption and decryption, while a symmetric key’s algorithm uses a single key for both processes. Because multiple keys are used with an asymmetric algorithm, the process takes longer to produce than a symmetric key algorithm would.

  9. Key size - Wikipedia

    en.wikipedia.org/wiki/Key_size

    In [1] cryptography, key size or key length refers to the number of bits in a key used by a cryptographic algorithm (such as a cipher).. Key length defines the upper-bound on an algorithm's security (i.e. a logarithmic measure of the fastest known attack against an algorithm), because the security of all algorithms can be violated by brute-force attacks.