Search results
Results from the WOW.Com Content Network
One-loop diagrams are usually computed as the integral over one independent momentum that can "run in the cycle". The Casimir effect , Hawking radiation and Lamb shift are examples of phenomena whose existence can be implied using one-loop Feynman diagrams, especially the well-known "triangle diagram":
The Feynman diagrams are much easier to keep track of than "old-fashioned" terms, because the old-fashioned way treats the particle and antiparticle contributions as separate. Each Feynman diagram is the sum of exponentially many old-fashioned terms, because each internal line can separately represent either a particle or an antiparticle.
In the Stückelberg–Feynman interpretation, pair annihilation is the same process as pair production: Møller scattering: electron-electron scattering Bhabha scattering: electron-positron scattering Penguin diagram: a quark changes flavor via a W or Z loop Tadpole diagram: One loop diagram with one external leg Self-interaction or oyster diagram
In quantum electrodynamics, the anomalous magnetic moment of a particle is a contribution of effects of quantum mechanics, expressed by Feynman diagrams with loops, to the magnetic moment of that particle. The magnetic moment, also called magnetic dipole moment, is a measure of the strength of a magnetic source.
In quantum field theory, a tadpole is a one-loop Feynman diagram with one external leg, giving a contribution to a one-point correlation function (i.e., the field's vacuum expectation value). One-loop diagrams with a propagator that connects back to its originating vertex
The one-loop contribution to the two-point correlator () (or rather, to the momentum space two-point correlator or Fourier transform of the two-point correlator) comes from a single Feynman diagram and is
To calculate the probability of any interactive process between electrons and photons, it is a matter of first noting, with Feynman diagrams, all the possible ways in which the process can be constructed from the three basic elements. Each diagram involves some calculation involving definite rules to find the associated probability amplitude.
Feynman parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops. However, it is sometimes useful in integration in areas of pure mathematics as well.