Search results
Results from the WOW.Com Content Network
There are three common notations for inverse trigonometric functions. The arcsine function, for instance, could be written as sin −1, asin, or, as is used on this page, arcsin. For each inverse trigonometric integration formula below there is a corresponding formula in the list of integrals of inverse hyperbolic functions.
The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse hyperbolic functions. For a complete list of integral formulas, see lists of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
The inverse tangent integral is a special function, defined by: Ti 2 ( x ) = ∫ 0 x arctan t t d t {\displaystyle \operatorname {Ti} _{2}(x)=\int _{0}^{x}{\frac {\arctan t}{t}}\,dt} Equivalently, it can be defined by a power series , or in terms of the dilogarithm , a closely related special function.
The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals.
The notations sin −1 (x), cos −1 (x), tan −1 (x), etc., as introduced by John Herschel in 1813, [7] [8] are often used as well in English-language sources, [1] much more than the also established sin [−1] (x), cos [−1] (x), tan [−1] (x) – conventions consistent with the notation of an inverse function, that is useful (for example ...
Indefinite sum – the inverse of a finite difference; Integration using Euler's formula – Use of complex numbers to evaluate integrals; Liouville's theorem (differential algebra) – Says when antiderivatives of elementary functions can be expressed as elementary functions; List of limits
Nevertheless, it can be shown that this theorem holds even if or is not differentiable: [3] [4] it suffices, for example, to use the Stieltjes integral in the previous argument. On the other hand, even though general monotonic functions are differentiable almost everywhere, the proof of the general formula does not follow, unless f − 1 ...
In the integral , we may use = , = , = . Then, = = () = = = + = +. The above step requires that > and > We can choose to be the principal root of , and impose the restriction / < < / by using the inverse sine function.