Search results
Results from the WOW.Com Content Network
For example, if 1254 is rounded to 2 significant figures, then 5 and 4 are replaced to 0 so that it will be 1300. For a number with the decimal point in rounding, remove the digits after the n digit. For example, if 14.895 is rounded to 3 significant figures, then the digits after 8 are removed so that it will be 14.9.
Here the 'IEEE 754 double value' resulting of the 15 bit figure is 3.330560653658221E-15, which is rounded by Excel for the 'user interface' to 15 digits 3.33056065365822E-15, and then displayed with 30 decimals digits gets one 'fake zero' added, thus the 'binary' and 'decimal' values in the sample are identical only in display, the values ...
There are two common rounding rules, round-by-chop and round-to-nearest. The IEEE standard uses round-to-nearest. Round-by-chop: The base-expansion of is truncated after the ()-th digit. This rounding rule is biased because it always moves the result toward zero.
The two options allow the significand to be encoded as a compressed sequence of decimal digits using densely packed decimal or, alternatively, as a binary integer. The former is more convenient for direct hardware implementation of the standard, while the latter is more suited to software emulation on a binary computer.
For example, the decimal number 123456789 cannot be exactly represented if only eight decimal digits of precision are available (it would be rounded to one of the two straddling representable values, 12345678 × 10 1 or 12345679 × 10 1), the same applies to non-terminating digits (. 5 to be rounded to either .55555555 or .55555556).
For example, while a fixed-point representation that allocates 8 decimal digits and 2 decimal places can represent the numbers 123456.78, 8765.43, 123.00, and so on, a floating-point representation with 8 decimal digits could also represent 1.2345678, 1234567.8, 0.000012345678, 12345678000000000, and so on.
Decimal arithmetic, compatible with that used in Java, C#, PL/I, COBOL, Python, REXX, etc., is also defined in this section. In general, decimal arithmetic follows the same rules as binary arithmetic (results are correctly rounded, and so on), with additional rules that define the exponent of a result (more than one is possible in many cases).
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...