enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    If a geometric shape can be used as a prototile to create a tessellation, the shape is said to tessellate or to tile the plane. The Conway criterion is a sufficient, but not necessary, set of rules for deciding whether a given shape tiles the plane periodically without reflections: some tiles fail the criterion, but still tile the plane. [19]

  3. List of tessellations - Wikipedia

    en.wikipedia.org/wiki/List_of_tessellations

    Hyperbolic; Article Vertex configuration Schläfli symbol Image Snub tetrapentagonal tiling: 3 2.4.3.5 : sr{5,4} Snub tetrahexagonal tiling: 3 2.4.3.6 : sr{6,4} Snub tetraheptagonal tiling

  4. Aperiodic set of prototiles - Wikipedia

    en.wikipedia.org/wiki/Aperiodic_set_of_prototiles

    Although a cube is the only regular polyhedron that admits of tessellation, many non-regular 3-dimensional shapes can tessellate, such as the truncated octahedron. The second part of Hilbert's eighteenth problem asked for a single polyhedron tiling Euclidean 3-space , such that no tiling by it is isohedral (an anisohedral tile).

  5. Electron precipitation - Wikipedia

    en.wikipedia.org/wiki/Electron_precipitation

    Groups of precipitated electrons can change the shape and conductivity of the ionosphere by colliding with atoms or molecules (usually oxygen- or nitrogen-based particles [4]) in the region. [5] When colliding with an atom, the electron strips the atom of its other electrons creating an ion.

  6. Tesseractic honeycomb - Wikipedia

    en.wikipedia.org/wiki/Tesseractic_honeycomb

    The tesseract can make a regular tessellation of 4-dimensional hyperbolic space, with 5 tesseracts around each face, with Schläfli symbol {4,3,3,5}, called an order-5 tesseractic honeycomb. The Ammann–Beenker tiling is an aperiodic tiling in 2 dimensions obtained by cut-and-project on the tesseractic honeycomb along an eightfold rotational ...

  7. Hexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_tiling

    In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t {3,6} (as a truncated triangular tiling).

  8. Cairo pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Cairo_pentagonal_tiling

    The regular pentagon cannot form Cairo tilings, as it does not tile the plane without gaps. There is a unique equilateral pentagon that can form a type 4 Cairo tiling; it has five equal sides but its angles are unequal, and its tiling is bilaterally symmetric. [4] [13] Infinitely many other equilateral pentagons can form type 2 Cairo tilings. [4]

  9. Tessellated pavement - Wikipedia

    en.wikipedia.org/wiki/Tessellated_pavement

    The origin of this type of tessellated pavement remains uncertain. The size and shape of these polygons appears to be dependent to a large extent on the grain size, texture, and coherence of the rock. This polygonal tessellation is best developed in relatively fine-grained, uniform, and siliceous or silicified sandstones. [1]