Search results
Results from the WOW.Com Content Network
The origin of this type of tessellated pavement remains uncertain. The size and shape of these polygons appears to be dependent to a large extent on the grain size, texture, and coherence of the rock. This polygonal tessellation is best developed in relatively fine-grained, uniform, and siliceous or silicified sandstones. [1]
If a geometric shape can be used as a prototile to create a tessellation, the shape is said to tessellate or to tile the plane. The Conway criterion is a sufficient, but not necessary, set of rules for deciding whether a given shape tiles the plane periodically without reflections: some tiles fail the criterion, but still tile the plane. [19]
Dual semi-regular Article Face configuration Schläfli symbol Image Apeirogonal deltohedron: V3 3.∞ : dsr{2,∞} Apeirogonal bipyramid: V4 2.∞ : dt{2,∞} Cairo pentagonal tiling
In plane geometry, the einstein problem asks about the existence of a single prototile that by itself forms an aperiodic set of prototiles; that is, a shape that can tessellate space but only in a nonperiodic way. Such a shape is called an einstein, a word play on ein Stein, German for "one stone". [2]
If a polygon can tile the plane, its prism is space-filling; examples include the cube, triangular prism, and the hexagonal prism. Any parallelepiped tessellates Euclidean 3-space , as do the five parallelohedra including the cube, hexagonal prism, truncated octahedron , and rhombic dodecahedron .
The regular pentagon cannot form Cairo tilings, as it does not tile the plane without gaps. There is a unique equilateral pentagon that can form a type 4 Cairo tiling; it has five equal sides but its angles are unequal, and its tiling is bilaterally symmetric. [4] [13] Infinitely many other equilateral pentagons can form type 2 Cairo tilings. [4]
The rhombic dodecahedral honeycomb (also dodecahedrille) is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is the Voronoi diagram of the face-centered cubic sphere-packing, which has the densest possible packing of equal spheres in ordinary space (see Kepler conjecture ).
In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t {3,6} (as a truncated triangular tiling).