enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Intrinsic semiconductor - Wikipedia

    en.wikipedia.org/wiki/Intrinsic_semiconductor

    In intrinsic semiconductors the number of excited electrons and the number of holes are equal: n = p. This may be the case even after doping the semiconductor, though only if it is doped with both donors and acceptors equally. In this case, n = p still holds, and the semiconductor remains intrinsic, though doped.

  3. Carrier generation and recombination - Wikipedia

    en.wikipedia.org/wiki/Carrier_generation_and...

    The following image shows change in excess carriers being generated (green:electrons and purple:holes) with increasing light intensity (generation rate /cm 3) at the center of an intrinsic semiconductor bar. Electrons have higher diffusion constant than holes leading to fewer excess electrons at the center as compared to holes.

  4. Charge carrier - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier

    The less abundant charge carriers are called minority carriers; in n-type semiconductors they are holes, while in p-type semiconductors they are electrons. [15] In an intrinsic semiconductor, which does not contain any impurity, the concentrations of both types of carriers are ideally equal. If an intrinsic semiconductor is doped with a donor ...

  5. Semiconductor - Wikipedia

    en.wikipedia.org/wiki/Semiconductor

    An (intrinsic) semiconductor has a band gap that is smaller than that of an insulator and at room temperature, significant numbers of electrons can be excited to cross the band gap. [23] A pure semiconductor, however, is not very useful, as it is neither a very good insulator nor a very good conductor.

  6. Fermi level - Wikipedia

    en.wikipedia.org/wiki/Fermi_level

    In an intrinsic or lightly doped semiconductor, μ is close enough to a band edge that there are a dilute number of thermally excited carriers residing near that band edge. In semiconductors and semimetals the position of μ relative to the band structure can usually be controlled to a significant degree by doping or gating.

  7. Valence and conduction bands - Wikipedia

    en.wikipedia.org/wiki/Valence_and_conduction_bands

    In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in which electrons are normally present at absolute zero temperature, while the conduction band is the lowest range of vacant electronic states.

  8. PIN diode - Wikipedia

    en.wikipedia.org/wiki/PIN_diode

    The wide intrinsic region makes the PIN diode an inferior rectifier (one typical function of a diode), but it makes it suitable for attenuators, fast switches, photodetectors, and high-voltage power electronics applications. The PIN photodiode was invented by Jun-Ichi Nishizawa and his colleagues in 1950. It is a semiconductor device.

  9. Band bending - Wikipedia

    en.wikipedia.org/wiki/Band_bending

    For intrinsic semiconductors (undoped), the valence band is fully filled with electrons, whilst the conduction band is completely empty. The Fermi level is thus located in the middle of the band gap, the same as that of the surface states, and hence there is no charge transfer between the bulk and the surface. As a result no band bending occurs.