Search results
Results from the WOW.Com Content Network
The predator's parameters, γ, δ, respectively describe the predator's per capita death rate, and the effect of the presence of prey on the predator's growth rate. All parameters are positive and real. The solution of the differential equations is deterministic and continuous. This, in turn, implies that the generations of both the predator ...
y is the predator density; K is the prey population's carrying capacity; γ and δ are predator population's parameters (rate of decay and benefits of consumption, respectively). The term () represents the prey's logistic growth, and + the predator's functional response.
Predators receive a reproductive payoff, e, for consuming prey, and die at rate u. Making predation pressure a function of the ratio of prey to predators contrasts with the prey-dependent Lotka–Volterra equations, where the per capita effect of predators on the prey population is simply a function of the magnitude of the prey population g(N).
The Predator franchise has spawned five movies — including the upcoming prequel film, Prey — and two crossover flicks pitting the titular predator against alien xenomorphs, not to mention ...
If predators learn while foraging, but do not reject prey before they accept one, the functional response becomes a function of the density of all prey types. This describes predators that feed on multiple prey and dynamically switch from one prey type to another. This behaviour can lead to either a type II or a type III functional response.
where N is the prey and P is the predator population sizes, r is the rate for prey growth, taken to be exponential in the absence of any predators, α is the prey mortality rate for per-capita predation (also called ‘attack rate’), c is the efficiency of conversion from prey to predator, and d is the exponential death rate for predators in ...
In the 1930s Alexander Nicholson and Victor Bailey developed a model to describe the population dynamics of a coupled predator–prey system. The model assumes that predators search for prey at random, and that both predators and prey are assumed to be distributed in a non-contiguous ("clumped") fashion in the environment. [30]
The generalized Lotka–Volterra equations are a set of equations which are more general than either the competitive or predator–prey examples of Lotka–Volterra types. [1] [2] They can be used to model direct competition and trophic relationships between an arbitrary number of species. Their dynamics can be analysed analytically to some extent.