Search results
Results from the WOW.Com Content Network
In computer science, linear search or sequential search is a method for finding an element within a list. It sequentially checks each element of the list until a match is found or the whole list has been searched. [1] A linear search runs in linear time in the worst case, and makes at most n comparisons, where n is the length of
The linear search problem was solved by Anatole Beck and Donald J. Newman (1970) as a two-person zero-sum game. Their minimax trajectory is to double the distance on each step and the optimal strategy is a mixture of trajectories that increase the distance by some fixed constant. [ 8 ]
Guided Local Search — modification of search algorithms which builds up penalties during a search; Reactive search optimization (RSO) — the algorithm adapts its parameters automatically; MM algorithm — majorize-minimization, a wide framework of methods; Least absolute deviations. Expectation–maximization algorithm
Comparison search algorithms improve on linear searching by successively eliminating records based on comparisons of the keys until the target record is found, and can be applied on data structures with a defined order. [4] Digital search algorithms work based on the properties of digits in data structures by using numerical keys. [5] Finally ...
The simplest, most general, and least efficient search structure is merely an unordered sequential list of all the items. Locating the desired item in such a list, by the linear search method, inevitably requires a number of operations proportional to the number n of items, in the worst case as well as in the average case. Useful search data ...
In optimization, line search is a basic iterative approach to find a local minimum of an objective function:. It first finds a descent direction along which the objective function f {\displaystyle f} will be reduced, and then computes a step size that determines how far x {\displaystyle \mathbf {x} } should move along that direction.
Nearest neighbor search (NNS), as a form of proximity search, is the optimization problem of finding the point in a given set that is closest (or most similar) to a given point. Closeness is typically expressed in terms of a dissimilarity function: the less similar the objects, the larger the function values.
Linear probing is a component of open addressing schemes for using a hash table to solve the dictionary problem.In the dictionary problem, a data structure should maintain a collection of key–value pairs subject to operations that insert or delete pairs from the collection or that search for the value associated with a given key.