Search results
Results from the WOW.Com Content Network
In photography, stops are also a unit used to quantify ratios of light or exposure, with each added stop meaning a factor of two, and each subtracted stop meaning a factor of one-half. The one-stop unit is also known as the EV (exposure value) unit. On a camera, the aperture setting is traditionally adjusted in discrete steps, known as f-stops.
The effect is that for most lenses, the balance between the decreasing aberrations and the increasing diffraction effects of stopping down the lens means that lenses have an optimum aperture for best results, often about three stops closed down from maximum aperture, so for a lens with a maximum aperture of ƒ/2.8, ƒ/8 would be the optimum ...
Electronic viewfinder interchangeable lens camera. See also MILC, mirrorless interchangeable-lens camera. [16] Exif: Exchangeable image file format. A standard format for tag data in digital camera files. [10] f: f-number, f-stop. The numerical value of a lens aperture. The ratio of the focal length of the lens divided by its effective aperture ...
As f /5.6 is 3 stops "faster" than f /16, with each stop meaning double the amount of light, a new shutter speed of (1/125)/(2·2·2) = 1/1000 s is needed. Once the photographer has determined the exposure, aperture stops can be traded for halvings or doublings of speed, within limits.
This camera has a fixed shutter speed, so the "EXP VALUE" ring simply sets the aperture. On most cameras, there is no direct way to transfer an EV to camera settings; however, a few cameras, such as some Voigtländer and Braun models or the Kodak Pony II shown in the photo, allowed direct setting of exposure value.
Camera exposure compensation is commonly stated in terms of EV units; 1 EV is equal to one exposure step (or stop), corresponding to a doubling of exposure. Exposure can be adjusted by changing either the lens aperture or the exposure time; which one is changed usually depends on the camera's exposure mode.
In addition to an aperture stop, a photographic lens may have one or more field stops, which limit the system's field of view. When the field of view is limited by a field stop in the lens (rather than at the film or sensor) vignetting results; this is only a problem if the resulting field of view is less than was desired.
The depth of field, and thus hyperfocal distance, changes with the focal length as well as the f-stop. This lens is set to the hyperfocal distance for f /32 at a focal length of 100 mm. In optics and photography, hyperfocal distance is a distance from a lens beyond which all objects can be brought into an "acceptable" focus.