enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lorenz system - Wikipedia

    en.wikipedia.org/wiki/Lorenz_system

    The Lorenz attractor is difficult to analyze, but the action of the differential equation on the attractor is described by a fairly simple geometric model. [24] Proving that this is indeed the case is the fourteenth problem on the list of Smale's problems .

  3. Portal:Mathematics/Selected picture/3 - Wikipedia

    en.wikipedia.org/wiki/Portal:Mathematics/...

    The Lorenz attractor is an iconic example of a strange attractor in chaos theory.This three-dimensional fractal structure, resembling a butterfly or figure eight, reflects the long-term behavior of solutions to the Lorenz system, a set of three differential equations used by mathematician and meteorologist Edward N. Lorenz as a simple description of fluid circulation in a shallow layer (of ...

  4. List of chaotic maps - Wikipedia

    en.wikipedia.org/wiki/List_of_chaotic_maps

    Burke-Shaw chaotic attractor [8] continuous: real: 3: 2: Chen chaotic attractor [9] continuous: real: 3: 3: Not topologically conjugate to the Lorenz attractor. Chen-Celikovsky system [10] continuous: real: 3 "Generalized Lorenz canonical form of chaotic systems" Chen-LU system [11] continuous: real: 3: 3: Interpolates between Lorenz-like and ...

  5. Portal:Systems science/Picture - Wikipedia

    en.wikipedia.org/wiki/Portal:Systems_science/Picture

    The Lorenz attractor is a 3-dimensional structure corresponding to the long-term behavior of a chaotic flow, noted for its butterfly shape. The map shows how the state of a dynamical system (the three variables of a three-dimensional system) evolves over time in a complex, non-repeating pattern.

  6. Dynamical system - Wikipedia

    en.wikipedia.org/wiki/Dynamical_system

    The Lorenz attractor arises in the study of the Lorenz oscillator, a dynamical system.. In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve.

  7. Logistic map - Wikipedia

    en.wikipedia.org/wiki/Logistic_map

    As shown in equation (2-1), the maximum value of the logistic map is given by r/4, which is the upper limit of the attractor. The lower limit of the attractor is given by the point f(r/4) where r/4 is mapped. Ultimately, the maximum and minimum values at which xn moves on the orbital diagram depend on the parameter r

  8. Chaos theory - Wikipedia

    en.wikipedia.org/wiki/Chaos_theory

    Lorenz equations used to generate plots for the y variable. The initial conditions for x and z were kept the same but those for y were changed between 1.001, 1.0001 and 1.00001. The values for , and were 45.91, 16 and 4 respectively. As can be seen from the graph, even the slightest difference in initial values causes significant changes after ...

  9. Malkus waterwheel - Wikipedia

    en.wikipedia.org/wiki/Malkus_waterwheel

    The Malkus waterwheel, also referred to as the Lorenz waterwheel or chaotic waterwheel, [1] is a mechanical model that exhibits chaotic dynamics. Its motion is governed by the Lorenz equations. While classical waterwheels rotate in one direction at a constant speed, the Malkus waterwheel exhibits chaotic motion where its rotation will speed up ...