Search results
Results from the WOW.Com Content Network
Examples of pulse shapes: (a) rectangular pulse, (b) cosine squared (raised cosine) pulse, (c) Dirac pulse, (d) sinc pulse, (e) Gaussian pulse. A pulse in signal processing is a rapid, transient change in the amplitude of a signal from a baseline value to a higher or lower value, followed by a rapid return to the baseline value. [1]
This way the noise covers a bandwidth that is much wider than the signal itself. The resulting signal influence relies mainly on the filtering of the noise. To describe the signal quality without taking the receiver into account, the optical SNR (OSNR) is used. The OSNR is the ratio between the signal power and the noise power in a given bandwidth.
Weak signal strength can also be caused by destructive interference of the signals from local towers in urban areas, or by the construction materials used in some buildings causing significant attenuation of signal strength. Large buildings such as warehouses, hospitals and factories often have no usable signal further than a few metres from ...
The pulse packet frequency in this example is 27.125 MHz of RF energy. The duty cycle for a pulsed radio frequency is the percent time the RF packet is on, 4.2% for this example ([0.042 ms × 1000 pulses divided by 1000 ms/s] × 100). The pulse packet form can be a square, triangle, sawtooth or sine wave. [1]
a signal is transmitted, with a long enough length so that the energy budget is correct; this signal is designed so that after matched filtering, the width of the intercorrelated signals is smaller than the width obtained by the standard sinusoidal pulse, as explained above (hence the name of the technique: pulse compression).
In digital electronics, a digital signal is a pulse amplitude modulated signal, i.e. a sequence of fixed-width electrical pulses or light pulses, each occupying one of a discrete number of levels of amplitude. [6] [7] A special case is a logic signal or a binary signal, which varies between a low and a high signal level.
Examples of ternary signals are (a) a pulse that can have a positive, zero, or negative voltage value at any given instant (PAM-3), (b) a sine wave that can assume phases of 0°, 120°, or 240° relative to a clock pulse (3-PSK), and (c) a carrier signal that can assume any one of three different frequencies depending on three different ...
Peak signal-to-noise ratio (PSNR) is an engineering term for the ratio between the maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its representation.