enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electronvolt - Wikipedia

    en.wikipedia.org/wiki/Electronvolt

    An electronvolt is the amount of energy gained or lost by a single electron when it moves through an electric potential difference of one volt.Hence, it has a value of one volt, which is 1 J/C, multiplied by the elementary charge e = 1.602 176 634 × 10 −19 C. [2]

  3. Electrochemical equivalent - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_equivalent

    The electrochemical equivalent of a substance is the mass of the substance deposited to one of the electrodes when a current of 1 ampere is passed for 1 second, i.e. a quantity of electricity of one coulomb is passed. The formula for finding electrochemical equivalent is as follows: = /

  4. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Massenergy_equivalence

    Massenergy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).

  5. Elementary charge - Wikipedia

    en.wikipedia.org/wiki/Elementary_charge

    In the SI system of units, the value of the elementary charge is exactly defined as = 1.602 176 634 × 10 −19 coulombs, or 160.2176634 zeptocoulombs (zC). [3] Since the 2019 revision of the SI, the seven SI base units are defined in terms of seven fundamental physical constants, of which the elementary charge is one.

  6. Mass-to-charge ratio - Wikipedia

    en.wikipedia.org/wiki/Mass-to-charge_ratio

    The mass-to-charge ratio (m/Q) is a physical quantity relating the mass (quantity of matter) and the electric charge of a given particle, expressed in units of kilograms per coulomb (kg/C). It is most widely used in the electrodynamics of charged particles , e.g. in electron optics and ion optics .

  7. Faraday constant - Wikipedia

    en.wikipedia.org/wiki/Faraday_constant

    Its use is much less common than of the coulomb, but is sometimes used in electrochemistry. [4] One faraday of charge is the charge of one mole of elementary charges (or of negative one mole of electrons), that is, 1 faraday = F × 1 mol = 9.648 533 212 331 001 84 × 10 4 C. Conversely, the Faraday constant F equals 1 faraday per mole.

  8. Faraday's laws of electrolysis - Wikipedia

    en.wikipedia.org/wiki/Faraday's_laws_of_electrolysis

    Michael Faraday reported that the mass (m) of a substance deposited or liberated at an electrode is directly proportional to the charge (Q, for which the SI unit is the ampere-second or coulomb). [ 3 ] m ∝ Q m Q = Z {\displaystyle m\propto Q\quad \implies \quad {\frac {m}{Q}}=Z}

  9. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Internal conversion; ... (total energy of radiation transferred to unit mass) ... (for identical particles in a coulomb potential, in centre of mass frame): ...