Search results
Results from the WOW.Com Content Network
The mass-to-charge ratio (m/Q) is a physical quantity relating the mass (quantity of matter) and the electric charge of a given particle, expressed in units of kilograms per coulomb (kg/C). It is most widely used in the electrodynamics of charged particles , e.g. in electron optics and ion optics .
The electrochemical equivalent of a substance is the mass of the substance deposited to one of the electrodes when a current of 1 ampere is passed for 1 second, i.e. a quantity of electricity of one coulomb is passed. The formula for finding electrochemical equivalent is as follows: = /
As the electroactive molecules are consumed, the current also decreases, approaching zero when the conversion is complete. The sample mass, molecular mass, number of electrons in the electrode reaction, and number of electrons passed during the experiment are all related by Faraday's laws. It follows that, if three of the values are known, then ...
Michael Faraday reported that the mass (m) of a substance deposited or liberated at an electrode is directly proportional to the charge (Q, for which the SI unit is the ampere-second or coulomb). [ 3 ] m ∝ Q m Q = Z {\displaystyle m\propto Q\quad \implies \quad {\frac {m}{Q}}=Z}
In the SI system of units, the value of the elementary charge is exactly defined as = 1.602 176 634 × 10 −19 coulombs, or 160.2176634 zeptocoulombs (zC). [3] Since the 2019 revision of the SI, the seven SI base units are defined in terms of seven fundamental physical constants, of which the elementary charge is one.
Its use is much less common than of the coulomb, but is sometimes used in electrochemistry. [4] One faraday of charge is the charge of one mole of elementary charges (or of negative one mole of electrons), that is, 1 faraday = F × 1 mol = 9.648 533 212 331 001 84 × 10 4 C. Conversely, the Faraday constant F equals 1 faraday per mole.
This is a result of two facts. Firstly, many plasma sources heat the electrons more strongly than the ions. Secondly, atoms and ions are much heavier than electrons, and energy transfer in a two-body collision is much more efficient if the masses are similar. Therefore, equilibration of the temperature happens very slowly, and is not achieved ...
The carrier concentration can be calculated by treating electrons moving back and forth across the bandgap just like the equilibrium of a reversible reaction from chemistry, leading to an electronic mass action law. The mass action law defines a quantity called the intrinsic carrier concentration, which for undoped materials: