Search results
Results from the WOW.Com Content Network
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air, is about 343 m/s (1,125 ft/s; 1,235 km/h; 767 mph; 667 kn), or 1 km in 2.91 s or one mile in 4.69 s.
The speed of sound at room temperature (20°C) is 343.15 m/s. [4] Using the formula =, we have: Typical female voices range from 1.3 metres (4 ft) to 2 metres (7 ft). Typical male voices range from 2.2 metres (7 ft) to 4 metres (13 ft).
Figure 1. Table 1's data in graphical format. Although given as a function of depth [note 1], the speed of sound in the ocean does not depend solely on depth.Rather, for a given depth, the speed of sound depends on the temperature at that depth, the depth itself, and the salinity at that depth, in that order.
Hearing range describes the frequency range that can be heard by humans or other animals, though it can also refer to the range of levels. The human range is commonly given as 20 to 20,000 Hz, although there is considerable variation between individuals, especially at high frequencies, and a gradual loss of sensitivity to higher frequencies ...
It is the property of sound that most determines pitch. [1] The generally accepted standard hearing range for humans is 20 to 20,000 Hz. [2] [3] [4] In air at atmospheric pressure, these represent sound waves with wavelengths of 17 metres (56 ft) to 1.7 centimetres (0.67 in).
The hearing of older adults is shown to be significantly less sensitive than that of younger adults at frequencies of 4000 and 8000 Hz, corresponding approximately to the piano keys and tones of b′′′′ (B7) and b′′′′′ (B8), respectively. B8 is near the high end of the piano frequency range.
The speed of sound depends on the medium the waves pass through, and is a fundamental property of the material. The first significant effort towards measurement of the speed of sound was made by Isaac Newton. He believed the speed of sound in a particular substance was equal to the square root of the pressure acting on it divided by its density:
An equal-loudness contour is a measure of sound pressure level, over the frequency spectrum, for which a listener perceives a constant loudness when presented with pure steady tones. [1] The unit of measurement for loudness levels is the phon and is arrived at by reference to equal-loudness contours. By definition, two sine waves of differing ...