enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Programming languages that support arbitrary precision computations, either built-in, or in the standard library of the language: Ada: the upcoming Ada 202x revision adds the Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.Big_Reals packages to the standard library, providing arbitrary precision integers and real numbers.

  3. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    A programmer may design the computation so that intermediate results stay within specified precision boundaries. Some programming languages such as Lisp, Python, Perl, Haskell, Ruby and Raku use, or have an option to use, arbitrary-precision numbers for all integer arithmetic. Although this reduces performance, it eliminates the possibility of ...

  4. Kahan summation algorithm - Wikipedia

    en.wikipedia.org/wiki/Kahan_summation_algorithm

    A way of performing correctly rounded sums using arbitrary precision is to extend adaptively using multiple floating-point components. This will minimize computational cost in common cases where high precision is not needed.

  5. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    The IEEE standard stores the sign, exponent, and significand in separate fields of a floating point word, each of which has a fixed width (number of bits). The two most commonly used levels of precision for floating-point numbers are single precision and double precision.

  6. Machine epsilon - Wikipedia

    en.wikipedia.org/wiki/Machine_epsilon

    This alternative definition is significantly more widespread: machine epsilon is the difference between 1 and the next larger floating point number.This definition is used in language constants in Ada, C, C++, Fortran, MATLAB, Mathematica, Octave, Pascal, Python and Rust etc., and defined in textbooks like «Numerical Recipes» by Press et al.

  7. SymPy - Wikipedia

    en.wikipedia.org/wiki/SymPy

    mpmath: a Python library for arbitrary-precision floating-point arithmetic [15] SympyCore: another Python computer algebra system [16] SfePy: Software for solving systems of coupled partial differential equations (PDEs) by the finite element method in 1D, 2D and 3D. [17] GAlgebra: Geometric algebra module (previously sympy.galgebra). [18]

  8. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    (NB. This website contains open source floating-point IP cores for the implementation of floating-point operators in FPGA or ASIC devices. The project double_fpu contains verilog source code of a double-precision floating-point unit. The project fpuvhdl contains vhdl source code of a single-precision floating-point unit.) Fleegal, Eric (2004).

  9. Precision (computer science) - Wikipedia

    en.wikipedia.org/wiki/Precision_(computer_science)

    Quadruple-precision floating-point format; Octuple-precision floating-point format; Of these, octuple-precision format is rarely used. The single- and double-precision formats are most widely used and supported on nearly all platforms. The use of half-precision format has been increasing especially in the field of machine learning since many ...