enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data Mining Extensions - Wikipedia

    en.wikipedia.org/wiki/Data_Mining_Extensions

    Data Mining Extensions (DMX) is a query language for data mining models supported by Microsoft's SQL Server Analysis Services product. [1] Like SQL, it supports a data definition language (DDL), data manipulation language (DML) and a data query language (DQL), all three with SQL-like syntax. Whereas SQL statements operate on relational tables ...

  3. Relational data mining - Wikipedia

    en.wikipedia.org/wiki/Relational_data_mining

    Relational data mining is the data mining technique for relational databases. [1] Unlike traditional data mining algorithms, which look for patterns in a single table (propositional patterns), relational data mining algorithms look for patterns among multiple tables (relational patterns). For most types of propositional patterns, there are ...

  4. Snowflake schema - Wikipedia

    en.wikipedia.org/wiki/Snowflake_schema

    Normalization splits up data to avoid redundancy (duplication) by moving commonly repeating groups of data into new tables. Normalization therefore tends to increase the number of tables that need to be joined in order to perform a given query, but reduces the space required to hold the data and the number of places where it needs to be updated if the data changes.

  5. Examples of data mining - Wikipedia

    en.wikipedia.org/wiki/Examples_of_data_mining

    Metabolomics is a very data heavy subject, and often involves sifting through massive amounts of irrelevant data before finding any conclusions. Data mining has allowed this relatively new field of medical research to grow considerably within the last decade, and will likely be the method of which new research is found within the subject. [28]

  6. Relational model - Wikipedia

    en.wikipedia.org/wiki/Relational_model

    A table may contain both duplicate rows and duplicate columns, and a table's columns are explicitly ordered. SQL uses a Null value to indicate missing data, which has no analog in the relational model. Because a row can represent unknown information, SQL does not adhere to the relational model's Information Principle. [7]: 153–155, 162

  7. Data redundancy - Wikipedia

    en.wikipedia.org/wiki/Data_redundancy

    Data redundancy leads to data anomalies and corruption and generally should be avoided by design; [5] applying database normalization prevents redundancy and makes the best possible usage of storage. [ 6 ]

  8. Aggregate (data warehouse) - Wikipedia

    en.wikipedia.org/wiki/Aggregate_(data_warehouse)

    This complexity should be transparent to the users of the data warehouse, thus when a request is made, the data warehouse should return data from the table with the correct grain. So when requests to the data warehouse are made, aggregate navigator functionality should be implemented, to help determine the correct table with the correct grain.

  9. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    There have been some efforts to define standards for the data mining process, for example, the 1999 European Cross Industry Standard Process for Data Mining (CRISP-DM 1.0) and the 2004 Java Data Mining standard (JDM 1.0). Development on successors to these processes (CRISP-DM 2.0 and JDM 2.0) was active in 2006 but has stalled since.