enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Observational error - Wikipedia

    en.wikipedia.org/wiki/Observational_error

    When either randomness or uncertainty modeled by probability theory is attributed to such errors, they are "errors" in the sense in which that term is used in statistics; see errors and residuals in statistics. Every time a measurement is repeated, slightly different results are obtained.

  3. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    It is remarkable that the sum of squares of the residuals and the sample mean can be shown to be independent of each other, using, e.g. Basu's theorem.That fact, and the normal and chi-squared distributions given above form the basis of calculations involving the t-statistic:

  4. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables ⁡ (+) = ⁡ + ⁡ + ⁡ (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...

  5. Lack-of-fit sum of squares - Wikipedia

    en.wikipedia.org/wiki/Lack-of-fit_sum_of_squares

    These are errors that could never be avoided by any predictive equation that assigned a predicted value for the dependent variable as a function of the value(s) of the independent variable(s). The remainder of the residual sum of squares is attributed to lack of fit of the model since it would be mathematically possible to eliminate these ...

  6. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  7. PRESS statistic - Wikipedia

    en.wikipedia.org/wiki/PRESS_statistic

    The out-of-sample predicted value is calculated for the omitted observation in each case, and the PRESS statistic is calculated as the sum of the squares of all the resulting prediction errors: [4] = = (^,)

  8. Errors-in-variables model - Wikipedia

    en.wikipedia.org/wiki/Errors-in-variables_model

    Linear errors-in-variables models were studied first, probably because linear models were so widely used and they are easier than non-linear ones. Unlike standard least squares regression (OLS), extending errors in variables regression (EiV) from the simple to the multivariable case is not straightforward, unless one treats all variables in the same way i.e. assume equal reliability.

  9. Hat notation - Wikipedia

    en.wikipedia.org/wiki/Hat_notation

    In statistics, a circumflex (ˆ), called a "hat", is used to denote an estimator or an estimated value. [1] For example, in the context of errors and residuals , the "hat" over the letter ε ^ {\displaystyle {\hat {\varepsilon }}} indicates an observable estimate (the residuals) of an unobservable quantity called ε {\displaystyle \varepsilon ...