Search results
Results from the WOW.Com Content Network
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...
The following derivatives are found by setting a variable y equal to the inverse trigonometric function that we wish to take the derivative of. Using implicit differentiation and then solving for dy/dx, the derivative of the inverse function is found in terms of y.
Similar to the sine and cosine functions, the inverse trigonometric functions can also be calculated using power series, as follows. For arcsine, the series can be derived by expanding its derivative, 1 1 − z 2 {\textstyle {\tfrac {1}{\sqrt {1-z^{2}}}}} , as a binomial series , and integrating term by term (using the integral definition as ...
In mathematics, the inverse hyperbolic functions are inverses of the hyperbolic functions, analogous to the inverse circular functions. There are six in common use: inverse hyperbolic sine, inverse hyperbolic cosine, inverse hyperbolic tangent, inverse hyperbolic cosecant, inverse hyperbolic secant, and inverse hyperbolic cotangent.
Therefore, the true derivative of f at x is the limit of the value of the difference quotient as the secant lines get closer and closer to being a tangent line: ′ = (+) (). Since immediately substituting 0 for h results in 0 0 {\displaystyle {\frac {0}{0}}} indeterminate form , calculating the derivative directly can be unintuitive.
When this notation is used, inverse functions could be confused with multiplicative inverses. The notation with the "arc" prefix avoids such a confusion, though "arcsec" for arcsecant can be confused with "arcsecond". Just like the sine and cosine, the inverse trigonometric functions can also be expressed in terms of infinite series.
The notation was introduced by Cayley who starts by calling = the Jacobi elliptic amplitude in the degenerate case where the elliptic modulus is =, so that + reduces to . [21] This is the inverse of the integral of the secant function. Using Cayley's notation,
In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .