enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stokes' theorem - Wikipedia

    en.wikipedia.org/wiki/Stokes'_theorem

    An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).

  3. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.

  4. Isosceles triangle - Wikipedia

    en.wikipedia.org/wiki/Isosceles_triangle

    In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length or two angles of equal measure. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.

  5. Equilateral triangle - Wikipedia

    en.wikipedia.org/wiki/Equilateral_triangle

    An equilateral triangle is a triangle that has three equal sides. It is a special case of an isosceles triangle in the modern definition, stating that an isosceles triangle is defined at least as having two equal sides. [1] Based on the modern definition, this leads to an equilateral triangle in which one of the three sides may be considered ...

  6. Special right triangle - Wikipedia

    en.wikipedia.org/wiki/Special_right_triangle

    The Kepler triangle is a right triangle whose sides are in geometric progression. If the sides are formed from the geometric progression a, ar, ar 2 then its common ratio r is given by r = √ φ where φ is the golden ratio. Its sides are therefore in the ratio 1 : √ φ : φ. Thus, the shape of the Kepler triangle is uniquely determined (up ...

  7. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    Stokes boundary layer due to the sinusoidal oscillation of the far-field flow velocity. The horizontal velocity is the blue line, and the corresponding horizontal particle excursions are the red dots.

  8. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Another approach is to split the triangle into two right-angled triangles. For example, take the Case 3 example where b, c, and B are given. Construct the great circle from A that is normal to the side BC at the point D. Use Napier's rules to solve the triangle ABD: use c and B to find the sides AD and BD and the angle ∠BAD.

  9. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    AAS (angle-angle-side): If two pairs of angles of two triangles are equal in measurement, and a pair of corresponding non-included sides are equal in length, then the triangles are congruent. AAS is equivalent to an ASA condition, by the fact that if any two angles are given, so is the third angle, since their sum should be 180°.