Search results
Results from the WOW.Com Content Network
Biological functions of nitric oxide are roles that nitric oxide plays within biology. Nitric oxide (nitrogen monoxide) is a molecule and chemical compound with chemical formula of N O . In mammals including humans, nitric oxide is a signaling molecule involved in several physiological and pathological processes. [ 1 ]
In biology, homeostasis (British also homoeostasis; / h ɒ m i oʊ ˈ s t eɪ s ɪ s,-m i ə-/ hoh-mee-oh-STAY-sis) is the state of steady internal physical and chemical conditions maintained by living systems. [1]
Living things require energy to maintain internal organization (homeostasis) and to produce the other phenomena associated with life. Growth: maintenance of a higher rate of anabolism than catabolism. A growing organism increases in size in all of its parts, rather than simply accumulating matter.
Acid–base homeostasis is the homeostatic regulation of the pH of the body's extracellular fluid (ECF). [1] The proper balance between the acids and bases (i.e. the pH) in the ECF is crucial for the normal physiology of the body—and for cellular metabolism . [ 1 ]
The balance of nature, also known as ecological balance, is a theory that proposes that ecological systems are usually in a stable equilibrium or homeostasis, which is to say that a small change (the size of a particular population, for example) will be corrected by some negative feedback that will bring the parameter back to its original "point of balance" with the rest of the system.
All India Secondary School Examination, commonly known as the class 10th board exam, is a centralized public examination that students in schools affiliated with the Central Board of Secondary Education, primarily in India but also in other Indian-patterned schools affiliated to the CBSE across the world, taken at the end of class 10.
Stress (biology) (20 P) T. Thyroid homeostasis (2 C, 9 P) Pages in category "Human homeostasis" The following 28 pages are in this category, out of 28 total.
Cori cycle. The Cori cycle (also known as the lactic acid cycle), named after its discoverers, Carl Ferdinand Cori and Gerty Cori, [1] is a metabolic pathway in which lactate, produced by anaerobic glycolysis in muscles, is transported to the liver and converted to glucose, which then returns to the muscles and is cyclically metabolized back to lactate.