Search results
Results from the WOW.Com Content Network
In mathematics, the Euclidean algorithm, [note 1] or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers, the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his Elements (c. 300 BC).
The theorem is frequently referred to as the division algorithm (although it is a theorem and not an algorithm), because its proof as given below lends itself to a simple division algorithm for computing q and r (see the section Proof for more). Division is not defined in the case where b = 0; see division by zero.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
In mathematics, Ruffini's rule is a method for computation of the Euclidean division of a polynomial by a binomial of the form x – r. It was described by Paolo Ruffini in 1809. [ 1 ] The rule is a special case of synthetic division in which the divisor is a linear factor.
Euclidean algorithm, a method for finding greatest common divisors; Extended Euclidean algorithm, a method for solving the Diophantine equation ax + by = d where d is the greatest common divisor of a and b; Euclid's lemma: if a prime number divides a product of two numbers, then it divides at least one of those two numbers
Euclid's lemma — If a prime p divides the product ab of two integers a and b, then p must divide at least one of those integers a or b. For example, if p = 19 , a = 133 , b = 143 , then ab = 133 × 143 = 19019 , and since this is divisible by 19, the lemma implies that one or both of 133 or 143 must be as well.
It is important to compare the class of Euclidean domains with the larger class of principal ideal domains (PIDs). An arbitrary PID has much the same "structural properties" of a Euclidean domain (or, indeed, even of the ring of integers), but lacks an analogue of the Euclidean algorithm and extended Euclidean algorithm to compute greatest ...
Lamé's Theorem is the result of Gabriel Lamé's analysis of the complexity of the Euclidean algorithm.Using Fibonacci numbers, he proved in 1844 [1] [2] that when looking for the greatest common divisor (GCD) of two integers a and b, the algorithm finishes in at most 5k steps, where k is the number of digits (decimal) of b.