enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron affinity (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity_(data_page)

    Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.

  3. Octet rule - Wikipedia

    en.wikipedia.org/wiki/Octet_rule

    The energy required to transfer an electron from a sodium atom to a chlorine atom (the difference of the 1st ionization energy of sodium and the electron affinity of chlorine) is small: +495.8 − 349 = +147 kJ mol −1. This energy is easily offset by the lattice energy of sodium chloride: −783 kJ mol −1. [3]

  4. Electron affinity - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity

    The electron affinity of molecules is a complicated function of their electronic structure. For instance the electron affinity for benzene is negative, as is that of naphthalene, while those of anthracene, phenanthrene and pyrene are positive. In silico experiments show that the electron affinity of hexacyanobenzene surpasses that of fullerene. [5]

  5. Anderson's rule - Wikipedia

    en.wikipedia.org/wiki/Anderson's_rule

    The electron affinity (usually given by the symbol in solid state physics) gives the energy difference between the lower edge of the conduction band and the vacuum level of the semiconductor. The band gap (usually given the symbol E g {\displaystyle E_{\rm {g}}} ) gives the energy difference between the lower edge of the conduction band and the ...

  6. Periodic trends - Wikipedia

    en.wikipedia.org/wiki/Periodic_trends

    The energy released when an electron is added to a neutral gaseous atom to form an anion is known as electron affinity. [14] Trend-wise, as one progresses from left to right across a period , the electron affinity will increase as the nuclear charge increases and the atomic size decreases resulting in a more potent force of attraction of the ...

  7. Electron configurations of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_configurations_of...

    As an approximate rule, electron configurations are given by the Aufbau principle and the Madelung rule. However there are numerous exceptions; for example the lightest exception is chromium, which would be predicted to have the configuration 1s 2 2s 2 2p 6 3s 2 3p 6 3d 4 4s 2 , written as [Ar] 3d 4 4s 2 , but whose actual configuration given ...

  8. Periodic table (electron configurations) - Wikipedia

    en.wikipedia.org/wiki/Periodic_table_(electron...

    Grayed out electron numbers indicate subshells filled to their maximum. Bracketed noble gas symbols on the left represent inner configurations that are the same in each period. Written out, these are: He, 2, helium : 1s 2 Ne, 10, neon : 1s 2 2s 2 2p 6 Ar, 18, argon : 1s 2 2s 2 2p 6 3s 2 3p 6 Kr, 36, krypton : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 ...

  9. Noble gas - Wikipedia

    en.wikipedia.org/wiki/Noble_gas

    2 according to the 3-center-4-electron bond model. Noble gas compounds such as xenon difluoride (XeF 2) are considered to be hypervalent because they violate the octet rule. Bonding in such compounds can be explained using a three-center four-electron bond model. [66] [67] This model, first proposed in 1951, considers bonding of three collinear ...