Search results
Results from the WOW.Com Content Network
In mathematics, a continuous-time random walk (CTRW) is a generalization of a random walk where the wandering particle waits for a random time between jumps. It is a stochastic jump process with arbitrary distributions of jump lengths and waiting times.
For example, consider a quadrant (circular sector) inscribed in a unit square. Given that the ratio of their areas is π / 4 , the value of π can be approximated using the Monte Carlo method: [1] Draw a square, then inscribe a quadrant within it. Uniformly scatter a given number of points over the square.
An elementary example of a random walk is the random walk on the integer number line which starts at 0, and at each step moves +1 or −1 with equal probability. Other examples include the path traced by a molecule as it travels in a liquid or a gas (see Brownian motion ), the search path of a foraging animal, or the price of a fluctuating ...
The Metropolis-Hastings algorithm sampling a normal one-dimensional posterior probability distribution.. In statistics and statistical physics, the Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution from which direct sampling is difficult.
An unbiased random walk, in any number of dimensions, is an example of a martingale. For example, consider a 1-dimensional random walk where at each time step a move to the right or left is equally likely. A gambler's fortune (capital) is a martingale if all the betting games which the gambler plays are fair.
If a systematic pattern is introduced into random sampling, it is referred to as "systematic (random) sampling". An example would be if the students in the school had numbers attached to their names ranging from 0001 to 1000, and we chose a random starting point, e.g. 0533, and then picked every 10th name thereafter to give us our sample of 100 ...
The term random function is also used to refer to a stochastic or random process, [25] [26] because a stochastic process can also be interpreted as a random element in a function space. [27] [28] The terms stochastic process and random process are used interchangeably, often with no specific mathematical space for the set that indexes the ...
A simple example may help to explain how the Gillespie algorithm works. Consider a system of molecules of two types, A and B . In this system, A and B reversibly bind together to form AB dimers such that two reactions are possible: either A and B react reversibly to form an AB dimer, or an AB dimer dissociates into A and B .