enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Solenoid - Wikipedia

    en.wikipedia.org/wiki/Solenoid

    A solenoid (/ ˈ s oʊ l ə n ɔɪ d / [1]) is a type of electromagnet formed by a helical coil of wire whose length is substantially greater than its diameter, [2] which generates a controlled magnetic field. The coil can produce a uniform magnetic field in a volume of space when an electric current is passed through it.

  3. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    The magnetic field of larger magnets can be obtained by modeling them as a collection of a large number of small magnets called dipoles each having their own m. The magnetic field produced by the magnet then is the net magnetic field of these dipoles; any net force on the magnet is a result of adding up the forces on the individual dipoles.

  4. Solenoidal vector field - Wikipedia

    en.wikipedia.org/wiki/Solenoidal_vector_field

    An example of a solenoidal vector field, (,) = (,) In vector calculus a solenoidal vector field (also known as an incompressible vector field , a divergence-free vector field , or a transverse vector field ) is a vector field v with divergence zero at all points in the field: ∇ ⋅ v = 0. {\displaystyle \nabla \cdot \mathbf {v} =0.}

  5. Electromagnetic induction - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_induction

    The magnetic field lines are indicated, with their direction shown by arrows. The magnetic flux corresponds to the 'density of field lines'. The magnetic flux is thus densest in the middle of the solenoid, and weakest outside of it. Faraday's law of induction makes use of the magnetic flux Φ B through a region of space enclosed by a wire loop.

  6. Biot–Savart law - Wikipedia

    en.wikipedia.org/wiki/Biot–Savart_law

    In physics, specifically electromagnetism, the Biot–Savart law (/ ˈ b iː oʊ s ə ˈ v ɑːr / or / ˈ b j oʊ s ə ˈ v ɑːr /) [1] is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current.

  7. Solenoid (engineering) - Wikipedia

    en.wikipedia.org/wiki/Solenoid_(engineering)

    The device creates a magnetic field [1] from electric current, and uses the magnetic field to create linear motion. [2] [3] [4] In electromagnetic technology, a solenoid is an actuator assembly with a sliding ferromagnetic plunger inside the coil. Without power, the plunger extends for part of its length outside the coil; applying power pulls ...

  8. Magnetic dipole - Wikipedia

    en.wikipedia.org/wiki/Magnetic_dipole

    The magnetic field of a current loop. The ring represents the current loop, which goes into the page at the x and comes out at the dot. In classical physics, the magnetic field of a dipole is calculated as the limit of either a current loop or a pair of charges as the source shrinks to a point while keeping the magnetic moment m constant.

  9. Magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Magnetic_moment

    This behavior is described by the Landau–Lifshitz–Gilbert equation: [21] [22] = where γ is the gyromagnetic ratio, m is the magnetic moment, λ is the damping coefficient and H eff is the effective magnetic field (the external field plus any self-induced field). The first term describes precession of the moment about the effective field ...