enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hydraulic diameter - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_diameter

    Using this term, one can calculate many things in the same way as for a round tube. When the cross-section is uniform along the tube or channel length, it is defined as [1] [2] =, where A is the cross-sectional area of the flow, P is the wetted perimeter of the cross-section.

  3. Characteristic length - Wikipedia

    en.wikipedia.org/wiki/Characteristic_length

    In those cases, the characteristic length is the diameter of the pipe or, in case of non-circular tubes, its hydraulic diameter : = Where is the cross-sectional area of the pipe and is its wetted perimeter. It is defined such that it reduces to a circular diameter of D for circular pipes.

  4. Entrance length (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Entrance_length_(fluid...

    In the case of a non-circular cross-section of a pipe, the same formula can be used to find the entry length with a little modification. A new parameter “hydraulic diameter” relates the flow in non-circular pipe to that of circular pipe flow. This is valid as long as the cross-sectional area shape is not too exaggerated.

  5. Wetted perimeter - Wikipedia

    en.wikipedia.org/wiki/Wetted_perimeter

    The wetted perimeter is the perimeter of the cross sectional area that is "wet". [1] The length of line of the intersection of channel wetted surface with a cross sectional plane normal to the flow direction. The term wetted perimeter is common in civil engineering, environmental engineering, hydrology, geomorphology, and heat transfer ...

  6. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    A is the cross-sectional area of pipe. The equation does not hold close to the pipe entrance. [8]: 3 The equation fails in the limit of low viscosity, wide and/or short pipe. Low viscosity or a wide pipe may result in turbulent flow, making it necessary to use more complex models, such as the Darcy–Weisbach equation.

  7. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    This is the cross-sectional area of the channel divided by the wetted perimeter. For a semi-circular channel, it is a quarter of the diameter (in case of full pipe flow). For a rectangular channel, the hydraulic radius is the cross-sectional area divided by the wetted perimeter.

  8. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    where the pressure loss per unit length ⁠ Δp / L ⁠ (SI units: Pa/m) is a function of: , the density of the fluid (kg/m 3);, the hydraulic diameter of the pipe (for a pipe of circular section, this equals D; otherwise D H = 4A/P for a pipe of cross-sectional area A and perimeter P) (m);

  9. Flow measurement - Wikipedia

    en.wikipedia.org/wiki/Flow_measurement

    Velocity times the cross-sectional area yields a flow rate which can be integrated into volumetric flow. There are two types of area velocity flowmeter: (1) wetted; and (2) non-contact. Wetted area velocity sensors have to be typically mounted on the bottom of a channel or river and use Doppler to measure the velocity of the entrained particles.