Search results
Results from the WOW.Com Content Network
The class of normal-inverse Gaussian distributions is closed under convolution in the following sense: [9] if and are independent random variables that are NIG-distributed with the same values of the parameters and , but possibly different values of the location and scale parameters, , and ,, respectively, then + is NIG-distributed with parameters ,, + and +.
In inversive geometry, an inverse curve of a given curve C is the result of applying an inverse operation to C. Specifically, with respect to a fixed circle with center O and radius k the inverse of a point Q is the point P for which P lies on the ray OQ and OP·OQ = k 2. The inverse of the curve C is then the locus of P as Q runs over C.
Inverse normal distribution. Add languages ... Print/export Download as PDF; Printable version; In other projects Appearance. move to sidebar hide. From Wikipedia ...
Print/export Download as PDF; ... The inverse factorial series: ... the normal cumulative distribution function plotted in the complex plane
In probability theory and statistics, an inverse distribution is the distribution of the reciprocal of a random variable. Inverse distributions arise in particular in the Bayesian context of prior distributions and posterior distributions for scale parameters .
The two generalized normal families described here, like the skew normal family, are parametric families that extends the normal distribution by adding a shape parameter. Due to the central role of the normal distribution in probability and statistics, many distributions can be characterized in terms of their relationship to the normal ...
This comes as a superior alternative to using the Normal distribution to model asset returns. An R package, JSUparameters , was developed in 2021 to aid in the estimation of the parameters of the best-fitting Johnson's S U {\displaystyle S_{U}} -distribution for a given dataset.
The scaled inverse chi-squared distribution also has a particular use in Bayesian statistics. Specifically, the scaled inverse chi-squared distribution can be used as a conjugate prior for the variance parameter of a normal distribution. The same prior in alternative parametrization is given by the inverse-gamma distribution.