Search results
Results from the WOW.Com Content Network
In astronomy, the barycenter (or barycentre; from Ancient Greek βαρύς (barús) 'heavy' and κέντρον (kéntron) 'center') [1] is the center of mass of two or more bodies that orbit one another and is the point about which the bodies orbit. A barycenter is a dynamical point, not a physical object.
This means that the time constant is the time elapsed after 63% of V max has been reached Setting for t = for the fall sets V(t) equal to 0.37V max, meaning that the time constant is the time elapsed after it has fallen to 37% of V max. The larger a time constant is, the slower the rise or fall of the potential of a neuron.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
In the spherical-coordinates example above, there are no cross-terms; the only nonzero metric tensor components are g rr = 1, g θθ = r 2 and g φφ = r 2 sin 2 θ. In his special theory of relativity, Albert Einstein showed that the distance ds between two spatial points is not constant, but depends on the motion of the observer.
The center of mass of a body with an axis of symmetry and constant density must lie on this axis. Thus, the center of mass of a circular cylinder of constant density has its center of mass on the axis of the cylinder. In the same way, the center of mass of a spherically symmetric body of constant density is at the center of the sphere.
For two bodies, the parameter may be expressed as G(m 1 + m 2), or as GM when one body is much larger than the other: = (+). For several objects in the Solar System, the value of μ is known to greater accuracy than either G or M. The SI unit of the standard gravitational parameter is m 3 ⋅s −2.
B g is the gravitomagnetic field, with SI unit s −1; B is the magnetic field; ρ g is mass density, with SI unit kg⋅m −3; ρ is charge density; J g is mass current density or mass flux (J g = ρ g v ρ, where v ρ is the velocity of the mass flow), with SI unit kg⋅m −2 ⋅s −1; J is electric current density; G is the gravitational ...
Barycentric Dynamical Time (TDB, from the French Temps Dynamique Barycentrique) is a relativistic coordinate time scale, intended for astronomical use as a time standard to take account of time dilation [1] when calculating orbits and astronomical ephemerides of planets, asteroids, comets and interplanetary spacecraft in the Solar System.