Search results
Results from the WOW.Com Content Network
The possibility of using microorganisms in biomining applications was realized after the 1951 paper by Kenneth Temple and Arthur Colmer. [9] In the paper the authors presented evidence that the bacteria Acidithiobacillus ferrooxidans (basonym Thiobacillus ferrooxidans) is an iron oxidizer that thrive in iron, copper and magnesium-rich environments. [9]
Extractive metallurgy is a branch of metallurgical engineering wherein process and methods of extraction of metals from their natural mineral deposits are studied. The field is a materials science, covering all aspects of the types of ore, washing, concentration, separation, chemical processes and extraction of pure metal and their alloying to suit various applications, sometimes for direct ...
Iron oxide becomes metallic iron at roughly 1250 °C (2282 °F or 1523 K), almost 300 degrees below iron's melting point of 1538 °C (2800 °F or 1811 K). [ 5 ] Mercuric oxide becomes vaporous mercury near 550 °C (1022 °F or 823 K), almost 600 degrees above mercury's melting point of -38 °C (-36.4 °F or 235 K), and also above mercury's ...
The blast furnace was the next step in smelting iron which produced pig iron. [4] The first blast furnaces in Europe appeared in the early 1200s around Sweden and Belgium, and not until the late 1400s in England. The pig iron poured from a blast furnace is high in carbon making it hard and brittle, making it hard to work with.
When a copper wire is dipped in a silver nitrate solution, copper displaces silver, turning the solution blue and solid silver precipitates out ("silver tree"): Cu + AgNO₃ → Cu(NO₃)₂ + Ag↓ NCSSM video on single displacement reaction Formation of tin crystals as zinc displaces tin, seen under microscope.
Bioleaching is the extraction or liberation of metals from their ores through the use of living organisms.Bioleaching is one of several applications within biohydrometallurgy and several methods are used to treat ores or concentrates containing copper, zinc, lead, arsenic, antimony, nickel, molybdenum, gold, silver, and cobalt.
Iron smelting—the extraction of usable metal from oxidized iron ores—is more difficult than tin and copper smelting. While these metals and their alloys can be cold-worked or melted in relatively simple furnaces (such as the kilns used for pottery ) and cast into molds, smelted iron requires hot-working and can be melted only in specially ...
Direct reduction processes can be divided roughly into two categories: gas-based and coal-based. In both cases, the objective of the process is to remove the oxygen contained in various forms of iron ore (sized ore, concentrates, pellets, mill scale, furnace dust, etc.) in order to convert the ore to metallic iron, without melting it (below 1,200 °C (2,190 °F)).