Search results
Results from the WOW.Com Content Network
The first loop in the algorithm below initializes the column vector C[n] so that C[0] = 1 and C(n) = 0 for n≥1. Note that C[0] remains equal to 1 throughout all subsequent iterations. In the second loop, each successive value of C(n) for n≥1 is set equal to the corresponding value of g(n,m) as the algorithm proceeds down column m. This is ...
The transfer-matrix method is used when the total system can be broken into a sequence of subsystems that interact only with adjacent subsystems. For example, a three-dimensional cubical lattice of spins in an Ising model can be decomposed into a sequence of two-dimensional planar lattices of spins that interact only adjacently.
For example, if V is an m × n matrix, W is an m × p matrix, and H is a p × n matrix then p can be significantly less than both m and n. Here is an example based on a text-mining application: Let the input matrix (the matrix to be factored) be V with 10000 rows and 500 columns where words are in rows and documents are in columns. That is, we ...
The inverse of a matrix has each eigenvalue inverted. A uniform scaling matrix is analogous to a constant number. In particular, the zero is analogous to 0, and; the identity matrix is analogous to 1. An idempotent matrix is an orthogonal projection with each eigenvalue either 0 or 1. A normal involution has eigenvalues .
In another usage in statistics, normalization refers to the creation of shifted and scaled versions of statistics, where the intention is that these normalized values allow the comparison of corresponding normalized values for different datasets in a way that eliminates the effects of certain gross influences, as in an anomaly time series. Some ...
Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.
In mathematics, the Smith normal form (sometimes abbreviated SNF [1]) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square ...
In theory, this algorithm can be used also for the fundamental matrix, but in practice the normalized eight-point algorithm, described by Richard Hartley in 1997, is better suited for this case. The algorithm's name derives from the fact that it estimates the essential matrix or the fundamental matrix from a set of eight (or more) corresponding ...