Search results
Results from the WOW.Com Content Network
In mathematics, the Wythoff array is an infinite matrix of positive integers derived from the Fibonacci sequence and named after Dutch mathematician Willem Abraham Wythoff. Every positive integer occurs exactly once in the array, and every integer sequence defined by the Fibonacci recurrence can be derived by shifting a row of the array.
Overlapping sub-problems means that the space of sub-problems must be small, that is, any recursive algorithm solving the problem should solve the same sub-problems over and over, rather than generating new sub-problems. For example, consider the recursive formulation for generating the Fibonacci sequence: F i = F i−1 + F i−2, with base ...
An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47. A repfigit can be a tribonacci sequence if there are 3 digits in the number, a tetranacci number if the number has four digits, etc.
The penultimate bit is the most significant bit and the first bit is the least significant bit. Also, leading zeros cannot be omitted as they can be in, for example, decimal numbers. The first few Fibonacci codes are shown below, and also their so-called implied probability, the value for each number that has a minimum-size code in Fibonacci ...
Yuri Matiyasevich was able to show that the Fibonacci numbers can be defined by a Diophantine equation, which led to his solving Hilbert's tenth problem. [69] The Fibonacci numbers are also an example of a complete sequence. This means that every positive integer can be written as a sum of Fibonacci numbers, where any one number is used once at ...
For example, decidability is known for rational sequences of order up to 5 subject to the Skolem conjecture (also known as the exponential local-global principle). Decidability is also known for all simple rational sequences (those with simple characteristic polynomial) subject to the Skolem conjecture and the weak p-adic Schanuel conjecture .
81) by recognising the left side of the equation as a determinant of a 2×2 matrix of Fibonacci numbers. The result is almost immediate when the matrix is seen to be the n th power of a matrix with determinant −1:
A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients , because the coefficients of the linear function (1 and 1) are constants that do not depend on n . {\displaystyle n.}