Search results
Results from the WOW.Com Content Network
In mammalian outer hair cells, the varying receptor potential is converted to active vibrations of the cell body. This mechanical response to electrical signals is termed somatic electromotility; [13] it drives variations in the cell's length, synchronized to the incoming sound signal, and provides mechanical amplification by feedback to the traveling wave.
The organ of Corti is located in the scala media of the cochlea of the inner ear between the vestibular duct and the tympanic duct and is composed of mechanosensory cells, known as hair cells. [2] Strategically positioned on the basilar membrane of the organ of Corti are three rows of outer hair cells (OHCs) and one row of inner hair cells ...
The hair cells are the primary auditory receptor cells and they are also known as auditory sensory cells, acoustic hair cells, auditory cells or cells of Corti. The organ of Corti is lined with a single row of inner hair cells and three rows of outer hair cells. The hair cells have a hair bundle at the apical surface of the cell.
That bone marrow is a priming site for T-cell responses to blood-borne antigens was first described in 2003. [13] Mature circulating naïve T cells home to bone marrow sinuses after they have passed through arteries and arterioles. [14] They transmigrate sinus endothelium and enter the parenchyma which contains dendritic cells (DCs).
Three rows consist of outer hair cells (OHCs) and one row consists of inner hair cells (IHCs). The inner hair cells provide the main neural output of the cochlea. The outer hair cells, instead, mainly 'receive' neural input from the brain, which influences their motility as part of the cochlea's mechanical "pre-amplifier".
In the cochlea, the vibrations are transduced into electrical information through the firing of hair cells in the organ of Corti. The organ of Corti projects in an orderly fashion to structures in the brainstem (namely, the cochlear nuclei and the inferior colliculus ), and from there to the medial geniculate nucleus of the thalamus and the ...
Within the ampulla is a mound of hair cells and supporting cells called crista ampullaris. These hair cells have many cytoplasmic projections on the apical surface called stereocilia which are embedded in a gelatinous structure called the cupula. As the head rotates, the duct moves, but the endolymph lags behind owing to inertia. This deflects ...
The neural crest runs the length of the tube with cranial neural crest cells at the cephalic end and caudal neural crest cells at the tail. Cells detach from the crest and migrate in a craniocaudal (head to tail) wave inside the tube. [67] Cells at the cephalic end give rise to the brain, and cells at the caudal end give rise to the spinal cord ...