Search results
Results from the WOW.Com Content Network
A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output (or both) are ...
In computing, a Monte Carlo algorithm is a randomized algorithm whose output may be incorrect with a certain (typically small) probability. Two examples of such algorithms are the Karger–Stein algorithm [ 1 ] and the Monte Carlo algorithm for minimum feedback arc set .
Random optimization (RO) is a family of numerical optimization methods that do not require the gradient of the optimization problem and RO can hence be used on functions that are not continuous or differentiable. Such optimization methods are also known as direct-search, derivative-free, or black-box methods.
In this randomized algorithm, if . Compared to weighted algorithm, this randomness halved the number of mistakes the algorithm is going to make. [ 9 ] However, it is important to note that in some research, people define η = 1 / 2 {\displaystyle \eta =1/2} in weighted majority algorithm and allow 0 ≤ η ≤ 1 {\displaystyle 0\leq \eta \leq 1 ...
The AoA is designed to examine a broad spectrum of potential alternatives to the mission need described in the Mission Needs Statement. The key purpose of the AoA is to identify a "solution" that will fulfill the stated requirements as optimally as possible commensurate with established cost and schedule constraints, at the lowest practicable risk.
swarm algorithms; evolutionary algorithms. genetic algorithms by Holland (1975) [19] evolution strategies; cascade object optimization & modification algorithm (2016) [20] In contrast, some authors have argued that randomization can only improve a deterministic algorithm if the deterministic algorithm was poorly designed in the first place. [21]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
If a full derandomization is desired, a completely deterministic simulation proceeds by replacing the random input to the randomized algorithm with the pseudorandom string produced by the pseudorandom generator. The simulation does this for all possible seeds and averages the output of the various runs of the randomized algorithm in a suitable way.