Search results
Results from the WOW.Com Content Network
quad XOR/XNOR gate, two inputs to select logic type 16 SN74S135: 74x136 4 quad 2-input XOR gate: open-collector 14 SN74LS136: 74x137 1 3-to-8 line decoder/demultiplexer, address latch, inverting outputs 16 SN74LS137: 74x138 1 3-to-8 line decoder/demultiplexer, inverting outputs 16 SN74LS138: 74x139 2 dual 2-to-4 line decoder/demultiplexer ...
The first part number in the series, the 7400, is a 14-pin IC containing four two-input NAND gates. Each gate uses two input pins and one output pin, with the remaining two pins being power (+5 V) and ground. This part was made in various through-hole and surface-mount packages, including flat pack and plastic/ceramic dual in-line.
XOR gate (sometimes EOR, or EXOR and pronounced as Exclusive OR) is a digital logic gate that gives a true (1 or HIGH) output when the number of true inputs is odd. An XOR gate implements an exclusive or ( ↮ {\displaystyle \nleftrightarrow } ) from mathematical logic ; that is, a true output results if one, and only one, of the inputs to the ...
Implementation of an XOR gate using a 2-2-OAI gate. References This page was last edited on 10 April 2024, at 06:56 (UTC). Text is available under the ...
A logic circuit diagram for a 4-bit carry lookahead binary adder design using only the AND, OR, and XOR logic gates. A logic gate is a device that performs a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output.
XNOR gates are represented in most TTL and CMOS IC families. The standard 4000 series CMOS IC is the 4077, and the TTL IC is the 74266 (although an open-collector implementation). Both include four independent, two-input, XNOR gates. The (now obsolete) 74S135 implemented four two-input XOR/XNOR gates or two three-input XNOR gates.
Together with the AND gate and the OR gate, any function in binary mathematics may be implemented. All other logic gates may be made from these three. [3] The terms "programmable inverter" or "controlled inverter" do not refer to this gate; instead, these terms refer to the XOR gate because it can conditionally function like a NOT gate. [1] [3]
In logical circuits, a simple adder can be made with an XOR gate to add the numbers, and a series of AND, OR and NOT gates to create the carry output. On some computer architectures, it is more efficient to store a zero in a register by XOR-ing the register with itself (bits XOR-ed with themselves are always zero) than to load and store the ...