enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperparameter optimization - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_optimization

    In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2] [3]

  3. Category:Optimization algorithms and methods - Wikipedia

    en.wikipedia.org/wiki/Category:Optimization...

    Learning rate; Least squares; Least-squares spectral analysis; Lemke's algorithm; Level-set method; Levenberg–Marquardt algorithm; Lexicographic max-min optimization; Lexicographic optimization; Limited-memory BFGS; Line search; Linear-fractional programming; Lloyd's algorithm; Local convergence; Local search (optimization) Luus–Jaakola

  4. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    From a Bayesian point of view, many regularization techniques correspond to imposing certain prior distributions on model parameters. [6] Regularization can serve multiple purposes, including learning simpler models, inducing models to be sparse and introducing group structure [clarification needed] into the learning problem.

  5. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    In machine learning, ... Optimization techniques are used in many facets of computational systems biology such as model building, optimal experimental design, ...

  6. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    In 1997, the practical performance benefits from vectorization achievable with such small batches were first explored, [13] paving the way for efficient optimization in machine learning. As of 2023, this mini-batch approach remains the norm for training neural networks, balancing the benefits of stochastic gradient descent with gradient descent .

  7. Bayesian optimization - Wikipedia

    en.wikipedia.org/wiki/Bayesian_optimization

    Bayesian optimization of a function (black) with Gaussian processes (purple). Three acquisition functions (blue) are shown at the bottom. [8]Bayesian optimization is typically used on problems of the form (), where is a set of points, , which rely upon less (or equal to) than 20 dimensions (,), and whose membership can easily be evaluated.

  8. Heuristic (computer science) - Wikipedia

    en.wikipedia.org/wiki/Heuristic_(computer_science)

    Matheuristics: Optimization algorithms made by the interoperation of metaheuristics and mathematical programming (MP) techniques. Reactive search optimization: Methods using online machine learning principles for self-tuning of heuristics.

  9. Evolutionary algorithm - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_algorithm

    Ant colony optimization is based on the ideas of ant foraging by pheromone communication to form paths. Primarily suited for combinatorial optimization and graph problems. Particle swarm optimization is based on the ideas of animal flocking behaviour. Also primarily suited for numerical optimization problems.