Search results
Results from the WOW.Com Content Network
The Boeing X-50A Dragonfly, formerly known as the Canard Rotor/Wing Demonstrator, was a VTOL rotor wing experimental unmanned aerial vehicle that was developed by Boeing and DARPA to demonstrate the principle that a helicopter's rotor could be stopped in flight and act as a fixed wing, enabling it to transition between fixed-wing and rotary-wing flight.
In the Bell design, Bell Model 301, the whole wingtip pod rotated between horizontal and vertical, with the engine and rotor assembly fixed together within the pod. This simplified the power transmission, but it had more complicated requirements for the engine design and was probably slightly heavier than the Boeing proposal.
Tiltrotor design combines the VTOL capability of a helicopter with the speed and range of a conventional fixed-wing aircraft. For vertical flight, the rotors are angled so the plane of rotation is horizontal, generating lift the way a normal helicopter rotor does. As the aircraft gains speed, the rotors are progressively tilted forward, with ...
The stopped rotor type has a separate system for forward thrust. It takes off like a helicopter but for forward flight the rotor stops and acts as a fixed wing. The gyrocopter is similar except that the rotor continues to spin and to generate a significant amount of lift, and so is classed as a rotorcraft and not a convertiplane.
A rotor wing aircraft has been attempted but is not in wide use. The Boeing X-50 Dragonfly had a two-bladed rotor driven by the engine for takeoff. In horizontal flight the rotor stopped to act like a wing. Fixed canard and tail surfaces provided lift during transition, and also stability and control in forward flight. Both examples of this ...
XV-3 in forward flight Bell XV-3 in a hover, 1955. This was first version with 3-blade rotors and crashed. XV-3 test, in vertical flight with 2 blade rotors. In 1951, the Army and Air Force announced the Convertible Aircraft Program and released the Request for Proposals (RFP) to solicit designs from the aircraft industry.
The various types of such rotor wings may be classified according to the axis of the rotor. Types include: [1] [2] Vertical-axis. Conventional rotary wings as used by modern rotorcraft. Spanwise horizontal-axis. Wing rotor: an airfoil-section horizontal-axis rotor which creates the primary lift. Magnus rotor: a rotor which creates lift via the ...
This is an accepted version of this page This is the latest accepted revision, reviewed on 6 February 2025. Military transport tiltrotor "V-22" redirects here. For other uses, see V22 (disambiguation). V-22 Osprey A MV-22 being used during a MAGTF demonstration during the 2014 Miramar Air Show General information Type Tiltrotor military transport aircraft National origin United States ...