Search results
Results from the WOW.Com Content Network
The x-intercept lands at 39.5 dynes per centimeter (This can be calculated by setting y equal to zero and solving for x) which is less than that of liquid 2, 42.9 dynes per centimeter; therefore, a more accurate measurement of the critical liquid surface tension needed to effectively wet the surface of PC can be obtained by including liquid 2 ...
Zisman termed the intercept of these lines when cos θ = 1 as the critical surface tension (γ c) of that surface. This critical surface tension is an important parameter because it is a characteristic of only the solid. Knowing the critical surface tension of a solid, it is possible to predict the wettability of the surface. [7]
Surface tension is an important factor in the phenomenon of capillarity. Surface tension has the dimension of force per unit length, or of energy per unit area. [4] The two are equivalent, but when referring to energy per unit of area, it is common to use the term surface energy, which is a more general term in the sense that it applies also to ...
This measured pressure permits obtaining the pore diameter, which is calculated by using the Young-Laplace formula P= 4*γ*cos θ*/D in which D is the pore size diameter, P is the pressure measured, γ is the surface tension of the wetting liquid and θ is the contact angle of the wetting liquid with the sample. The surface tension γ is a ...
The density, molar mass and the critical temperature of the liquid have to be known. At the critical point the surface tension is zero. The first assumption of the Eötvös rule is: 1. The surface tension is a linear function of the temperature. This assumption is approximately fulfilled for most known liquids.
The wetting phase is identified by its ability to preferentially diffuse across the capillary walls before the non-wetting phase. The "wettability" of a fluid depends on its surface tension, the forces that drive a fluid's tendency to take up the minimal amount of space possible, and it is determined by the contact angle of the fluid. [1]
Surface roughness has a strong effect on the contact angle and wettability of a surface. The effect of roughness depends on if the droplet will wet the surface grooves or if air pockets will be left between the droplet and the surface. [10] If the surface is wetted homogeneously, the droplet is in Wenzel state. [11]
The liquid entry pressure (LEP) of a hydrophobic membrane is the pressure that must be applied to a dry membrane so that the liquid penetrates inside the membrane. LEP with the application in membrane distillation or pervaporation can be calculated as a first parameter to indicate how wettable a membrane is toward different liquid solutions.