Search results
Results from the WOW.Com Content Network
For example, if a person places a force of 10 N at the terminal end of a wrench that is 0.5 m long (or a force of 10 N acting 0.5 m from the twist point of a wrench of any length), the torque will be 5 N⋅m – assuming that the person moves the wrench by applying force in the plane of movement and perpendicular to the wrench.
The newton-metre or newton-meter (also non-hyphenated, newton metre or newton meter; symbol N⋅m [1] or N m [1]) [a] is the unit of torque (also called moment) in the International System of Units (SI). One newton-metre is equal to the torque resulting from a force of one newton applied perpendicularly to the end of a moment arm that is one ...
The equation for torque is very important in angular mechanics. Torque is rotational force and is determined by a cross product. This makes it a pseudovector. = where is torque, r is radius, and is a cross product. Another variation of this equation is:
often simply called moment or torque newton meter (N⋅m) mass: kilogram (kg) normal vector unit varies depending on context atomic number: unitless refractive index: unitless principal quantum number: unitless amount of substance: mole: power: watt (W) probability
The symbols I and J are usually used to refer to the moment of inertia or polar moment of inertia. While a simple scalar treatment of the moment of inertia suffices for many situations, a more advanced tensor treatment allows the analysis of such complicated systems as spinning tops and gyroscopic motion.
The force and torque vectors that arise in applying Newton's laws to a rigid body can be assembled into a screw called a wrench. A force has a point of application and a line of action, therefore it defines the Plücker coordinates of a line in space and has zero pitch. A torque, on the other hand, is a pure moment that is not bound to a line ...
The forces have a turning effect or moment called a torque about an axis which is normal (perpendicular) to the plane of the forces. The SI unit for the torque of the couple is newton metre. If the two forces are F and −F, then the magnitude of the torque is given by the following formula: = where
In physics and engineering, a resultant force is the single force and associated torque obtained by combining a system of forces and torques acting on a rigid body via vector addition. The defining feature of a resultant force, or resultant force-torque, is that it has the same effect on the rigid body as the original system of forces. [1]