enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Earth radius - Wikipedia

    en.wikipedia.org/wiki/Earth_radius

    Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).

  3. Figure of the Earth - Wikipedia

    en.wikipedia.org/wiki/Figure_of_the_Earth

    The Earth's radius is the distance from Earth's center to its surface, about 6,371 km (3,959 mi). While "radius" normally is a characteristic of perfect spheres, the Earth deviates from spherical by only a third of a percent, sufficiently close to treat it as a sphere in many contexts and justifying the term "the radius of the Earth".

  4. Earth - Wikipedia

    en.wikipedia.org/wiki/Earth

    Earth's surface is the boundary between the atmosphere, and the solid Earth and oceans. Defined in this way, it has an area of about 510 million km 2 (197 million sq mi). [12] Earth can be divided into two hemispheres: by latitude into the polar Northern and Southern hemispheres; or by longitude into the continental Eastern and Western hemispheres.

  5. Earth's circumference - Wikipedia

    en.wikipedia.org/wiki/Earth's_circumference

    Earth's circumference is the distance around Earth. Measured around the equator, it is 40,075.017 km (24,901.461 mi). Measured passing through the poles, the circumference is 40,007.863 km (24,859.734 mi). [1] Treating the Earth as a sphere, its circumference would be its single most important measurement. [2]

  6. Earth ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Earth_ellipsoid

    For comparison, Earth's Moon is even less elliptical, with a flattening of less than 1/825, while Jupiter is visibly oblate at about 1/15 and one of Saturn's triaxial moons, Telesto, is highly flattened, with f between 1/3 and 1/2 (meaning that the polar diameter is between 50% and 67% of the equatorial.

  7. Equatorial bulge - Wikipedia

    en.wikipedia.org/wiki/Equatorial_bulge

    The planet Earth has a rather slight equatorial bulge; its equatorial diameter is about 43 km (27 mi) greater than its polar diameter, with a difference of about 1 ⁄ 298 of the equatorial diameter. If Earth were scaled down to a globe with an equatorial diameter of 1 metre (3.3 ft), that difference would be only 3 mm (0.12 in).

  8. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    So long as a spherical Earth is assumed, any single formula for distance on the Earth is only guaranteed correct within 0.5% (though better accuracy is possible if the formula is only intended to apply to a limited area). Using the mean Earth radius, = (+) (for the WGS84 ellipsoid) means that in the limit of small flattening, the mean square ...

  9. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    () is roughly , the area inside a circle of radius . This is because on average, each unit square contains one lattice point. This is because on average, each unit square contains one lattice point. Thus, the actual number of lattice points in the circle is approximately equal to its area, π r 2 {\displaystyle \pi r^{2}} .