Search results
Results from the WOW.Com Content Network
Kutta–Joukowski theorem is an inviscid theory, but it is a good approximation for real viscous flow in typical aerodynamic applications. [2] Kutta–Joukowski theorem relates lift to circulation much like the Magnus effect relates side force (called Magnus force) to rotation. [3] However, the circulation here is not induced by rotation of the ...
This is known as the Kutta–Joukowski theorem. [6] This equation applies around airfoils, where the circulation is generated by airfoil action; and around spinning objects experiencing the Magnus effect where the circulation is induced mechanically. In airfoil action, the magnitude of the circulation is determined by the Kutta condition. [6]
Lifting line theory supposes wings that are long and thin with negligible fuselage, akin to a thin bar (the eponymous "lifting line") of span 2s driven through the fluid. . From the Kutta–Joukowski theorem, the lift L(y) on a 2-dimensional segment of the wing at distance y from the fuselage is proportional to the circulation Γ(y) about the bar a
Kutta condition – is a principle in steady-flow fluid dynamics, especially aerodynamics, that is applicable to solid bodies with sharp corners, such as the trailing edges of airfoils. It is named for German mathematician and aerodynamicist Martin Kutta. Kuethe and Schetzer state the Kutta condition as follows: [121]: § 4.11
Nikolay Yegorovich Zhukovsky [1] (Russian: Никола́й Его́рович Жуко́вский, IPA: [ʐʊˈkofskʲɪj]; 17 January [O.S. 5 January] 1847 – 17 March 1921) was a Russian scientist, mathematician and engineer, and a founding father of modern aero-and hydrodynamics.
When an airfoil is moving with an angle of attack, the starting vortex has been cast off and the Kutta condition has become established, there is a finite circulation of the air around the airfoil. The airfoil is generating lift, and the magnitude of the lift is given by the Kutta–Joukowski theorem. [5]: § 4.5
Example of a Joukowsky transform. The circle above is transformed into the Joukowsky airfoil below. In applied mathematics, the Joukowsky transform (sometimes transliterated Joukovsky, Joukowski or Zhukovsky) is a conformal map historically used to understand some principles of airfoil design.
Template: Material properties equations ... Download QR code; Print/export Download as PDF; Printable version; In other projects