enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Atomic_nucleus

    Neutrons are electrically neutral, but contribute to the mass of a nucleus to nearly the same extent as the protons. Neutrons can explain the phenomenon of isotopes (same atomic number with different atomic mass). The main role of neutrons is to reduce electrostatic repulsion inside the nucleus.

  3. Table of nuclides - Wikipedia

    en.wikipedia.org/wiki/Table_of_nuclides

    Isotones are nuclides with the same number of neutrons but differing numbers of protons. Isotones neighbor each other horizontally. Examples include carbon-14, nitrogen-15, and oxygen-16 in the table above. Isobars are nuclides with the same number of nucleons (i.e. mass number) but different numbers of protons and neutrons. Isobars neighbor ...

  4. List of nuclides - Wikipedia

    en.wikipedia.org/wiki/List_of_nuclides

    The number of protons (Z column) and number of neutrons (N column). energy column The column labeled "energy" denotes the energy equivalent of the mass of a neutron minus the mass per nucleon of this nuclide (so all nuclides get a positive value) in MeV , formally: m n − m nuclide / A , where A = Z + N is the mass number.

  5. Stable nuclide - Wikipedia

    en.wikipedia.org/wiki/Stable_nuclide

    Stable even–even nuclides number as many as three isobars for some mass numbers, and up to seven isotopes for some atomic numbers. Conversely, of the 251 known stable nuclides, only five have both an odd number of protons and odd number of neutrons: hydrogen-2 , lithium-6, boron-10, nitrogen-14, and tantalum-180m.

  6. Neutron number - Wikipedia

    en.wikipedia.org/wiki/Neutron_number

    The neutron number (symbol N) is the number of neutrons in a nuclide. Atomic number (proton number) plus neutron number equals mass number: Z + N = A. The difference between the neutron number and the atomic number is known as the neutron excess: D = N − Z = A − 2Z.

  7. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    Nuclides with the same atomic mass number, but different atomic and neutron numbers, are called isobars. [8] The mass of a nucleus is always slightly less than the sum of its proton and neutron masses: the difference in mass represents the mass equivalent to nuclear binding energy, the energy which would need to be added to take the nucleus apart.

  8. Isotope - Wikipedia

    en.wikipedia.org/wiki/Isotope

    The number of nucleons (both protons and neutrons) in the nucleus is the atom's mass number, and each isotope of a given element has a different mass number. For example, carbon-12 , carbon-13 , and carbon-14 are three isotopes of the element carbon with mass numbers 12, 13, and 14, respectively.

  9. Atom - Wikipedia

    en.wikipedia.org/wiki/Atom

    Atoms with equal numbers of protons but a different number of neutrons are different isotopes of the same element. For example, all hydrogen atoms admit exactly one proton, but isotopes exist with no neutrons ( hydrogen-1 , by far the most common form, [ 57 ] also called protium), one neutron ( deuterium ), two neutrons ( tritium ) and more ...