enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Atomic_nucleus

    Neutrons are electrically neutral, but contribute to the mass of a nucleus to nearly the same extent as the protons. Neutrons can explain the phenomenon of isotopes (same atomic number with different atomic mass). The main role of neutrons is to reduce electrostatic repulsion inside the nucleus.

  3. Table of nuclides - Wikipedia

    en.wikipedia.org/wiki/Table_of_nuclides

    Isotones are nuclides with the same number of neutrons but differing numbers of protons. Isotones neighbor each other horizontally. Examples include carbon-14, nitrogen-15, and oxygen-16 in the table above. Isobars are nuclides with the same number of nucleons (i.e. mass number) but different numbers of protons and neutrons. Isobars neighbor ...

  4. Neutron number - Wikipedia

    en.wikipedia.org/wiki/Neutron_number

    The neutron number (symbol N) is the number of neutrons in a nuclide. Atomic number (proton number) plus neutron number equals mass number : Z + N = A . The difference between the neutron number and the atomic number is known as the neutron excess: D = N − Z = A − 2 Z .

  5. Stable nuclide - Wikipedia

    en.wikipedia.org/wiki/Stable_nuclide

    Stable even–even nuclides number as many as three isobars for some mass numbers, and up to seven isotopes for some atomic numbers. Conversely, of the 251 known stable nuclides, only five have both an odd number of protons and odd number of neutrons: hydrogen-2 , lithium-6, boron-10, nitrogen-14, and tantalum-180m.

  6. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    Nuclides with the same atomic mass number, but different atomic and neutron numbers, are called isobars. [8] The mass of a nucleus is always slightly less than the sum of its proton and neutron masses: the difference in mass represents the mass equivalent to nuclear binding energy, the energy which would need to be added to take the nucleus apart.

  7. Isotopes of iron - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_iron

    Iron-60 has a half-life of 2.6 million years, [12] [13] but was thought until 2009 to have a half-life of 1.5 million years. It undergoes beta decay to cobalt-60 , which then decays with a half-life of about 5 years to stable nickel-60.

  8. Isotope - Wikipedia

    en.wikipedia.org/wiki/Isotope

    The number of nucleons (both protons and neutrons) in the nucleus is the atom's mass number, and each isotope of a given element has a different mass number. For example, carbon-12 , carbon-13 , and carbon-14 are three isotopes of the element carbon with mass numbers 12, 13, and 14, respectively.

  9. Mass number - Wikipedia

    en.wikipedia.org/wiki/Mass_number

    The mass number is different for each isotope of a given chemical element, and the difference between the mass number and the atomic number Z gives the number of neutrons (N) in the nucleus: N = A − Z. [2] The mass number is written either after the element name or as a superscript to the left of an element's symbol.