enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    A Noetherian integral domain is a UFD if and only if every height 1 prime ideal is principal (a proof is given at the end). Also, a Dedekind domain is a UFD if and only if its ideal class group is trivial. In this case, it is in fact a principal ideal domain. In general, for an integral domain A, the following conditions are equivalent: A is a UFD.

  3. Irreducible element - Wikipedia

    en.wikipedia.org/wiki/Irreducible_element

    If is an integral domain, then is an irreducible element of if and only if, for all ,, the equation = implies that the ideal generated by is equal to the ideal generated by or equal to the ideal generated by . This equivalence does not hold for general commutative rings, which is why the assumption of the ring having no nonzero zero divisors is ...

  4. List of number fields with class number one - Wikipedia

    en.wikipedia.org/wiki/List_of_number_fields_with...

    The class number of a number field is by definition the order of the ideal class group of its ring of integers. Thus, a number field has class number 1 if and only if its ring of integers is a principal ideal domain (and thus a unique factorization domain). The fundamental theorem of arithmetic says that Q has class number 1.

  5. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    In the case of coefficients in a unique factorization domain R, "rational numbers" must be replaced by "field of fractions of R". This implies that, if R is either a field, the ring of integers, or a unique factorization domain, then every polynomial ring (in one or several indeterminates) over R is a unique factorization domain. Another ...

  6. Square-free element - Wikipedia

    en.wikipedia.org/wiki/Square-free_element

    The unique factorization property means that a non-zero non-unit r can be represented as a product of prime elements r = p 1 p 2 ⋯ p n {\displaystyle r=p_{1}p_{2}\cdots p_{n}} Then r is square-free if and only if the primes p i are pairwise non-associated (i.e. that it doesn't have two of the same prime as factors, which would make it ...

  7. Fundamental theorem of ideal theory in number fields

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    In number theory, the fundamental theorem of ideal theory in number fields states that every nonzero proper ideal in the ring of integers of a number field admits unique factorization into a product of nonzero prime ideals. In other words, every ring of integers of a number field is a Dedekind domain.

  8. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    All polynomials with coefficients in a unique factorization domain (for example, the integers or a field) also have a factored form in which the polynomial is written as a product of irreducible polynomials and a constant. This factored form is unique up to the order of the factors and their multiplication by an invertible constant.

  9. Dedekind domain - Wikipedia

    en.wikipedia.org/wiki/Dedekind_domain

    A Krull domain is a higher-dimensional analog of a Dedekind domain: a Dedekind domain that is not a field is a Krull domain of dimension 1. This notion can be used to study the various characterizations of a Dedekind domain. In fact, this is the definition of a Dedekind domain used in Bourbaki's "Commutative algebra".